
Computers and Electrical Engineering xxx (2014) xxx–xxx
Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier .com/ locate/compeleceng
Distributed topology discovery in self-assembled nano
network-on-chip q
http://dx.doi.org/10.1016/j.compeleceng.2014.09.003
0045-7906/� 2014 Elsevier Ltd. All rights reserved.

q Reviews processed and recommended for publication to the Editor-in-Chief by Guest Editor Dr. Masoud Daneshtalab.
⇑ Corresponding author.

E-mail addresses: vincenzo.catania@dieei.unict.it (V. Catania), andrea.mineo@dieei.unict.it (A. Mineo), salvatore.monteleone@diee
(S. Monteleone), davide.patti@dieei.unict.it (D. Patti).

Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Compu
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003
Vincenzo Catania, Andrea Mineo, Salvatore Monteleone, Davide Patti ⇑
DIEEI, University of Catania, V.le Andrea Doria 6, 95125 Catania, Italy
a r t i c l e i n f o

Article history:
Received 24 February 2014
Received in revised form 12 September 2014
Accepted 12 September 2014
Available online xxxx

Keywords:
Nanotechnology
DNA
Self-assembly
Routing
Deadlock
a b s t r a c t

In this paper, we present DiSR, a distributed approach to topology discovery and defect
mapping in a self-assembled nano network-on-chip. The main aim is to achieve the
already-proven properties of segment-based deadlock freedom requiring neither a
topology graph as input, nor a centralized algorithm to configure network paths. After
introducing the conceptual elements and the execution model of DiSR, we show how the
open-source Nanoxim platform has been used to evaluate the proposed approach in the
process of discovering irregular network topology while establishing network segments.
Comparison against a tree-based approach shows how DiSR still preserves some important
properties (coverage, defect tolerance, scalability) while avoiding resource hungry solu-
tions such as virtual channels and hardware redundancy. Finally, we propose a gate-level
hardware implementation of the required control logic and storage for DiSR, demonstrat-
ing a relatively acceptable impact ranging from 10 to about 20% of the budget of transistors
available for each node.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

Exploring long-term alternatives to the CMOS technology is gaining more and more relevance as the scaling trend of such
devices keeps introducing new challenges: power density, defect tolerance, testing costs and wire delays are only a few of
the many critical aspects involved [1]. While software parallelism and multicore approaches [2,3] are partially mitigating the
impact of such constraints on performances, it is likely that a growing computing demand will eventually need even more
radical architectural modifications and paradigm shifts to address the Computer Design challenges of the upcoming decades.

In recent years, self-assembled nanoscale architectures [4] emerged as a promising technology due their tera/peta scale of
integration, defect tolerance and huge potential computing capabilities. These technologies are certainly still at their early
stage of development; however, different laboratory demos and proofs-of-concept have been presented [5,6]. For a complete
survey on self-assembled architectures and how they compare against classical many-core systems in terms of technologies,
fault tolerance, performance and software tools see also [7]. The main idea behind this approach is exploiting the physical
regularity and stability of DNA structures in order to create a scaffold onto which nano-devices (e.g. nanowires and CNFETs
[8,9]) can be attached. This can be achieved by designing appropriate complementary DNA tags for each terminal to be
i.unict.it

t Electr

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003
mailto:vincenzo.catania@dieei.unict.it
mailto:andrea.mineo@dieei.unict.it
mailto:salvatore.monteleone@dieei.unict.it
mailto:davide.patti@dieei.unict.it
http://dx.doi.org/10.1016/j.compeleceng.2014.09.003
http://www.sciencedirect.com/science/journal/00457906
http://www.elsevier.com/locate/compeleceng
http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


2 V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx
placed, so that a nano device will be attached only where its own DNA tag matches a complementary tag on the DNA grid
scaffold (see Fig. 1a). Of course, a detailed description of the chemical properties involved is far beyond the scope of this
paper (see also [10]).

In this work, we present DiSR (Distributed Segment Routing), a distributed approach focused on addressing the three
main challenges that this new fabrication process introduces in nanoscale Network-on-Chip Design: (i) limited node complex-
ity, (ii) large scale randomness and (iii) high defect rates. The limited node complexity aspect is directly related to the use of
complementary DNA tags in order to place circuit components. The traditional CMOS process introduces complexity with
larger photolithography masks: more complex (larger) circuits will only require larger masks. Conversely, a self-assembly
process achieves complexity by increasing the number of unique DNA tags, since having more different tags means having
more control on component placement. Ideally, by specifying a single and unique tag for each nano device terminal, we could
exactly choose where each component would be placed in the design, but the number of DNA symbols forming the DNA
sequence is limited (sequence of 4 nucleobases G, A, T, C) and so creating many different tags (of a predetermined length)
would mean making them more similar to each other, increasing the probability of incorrect/partial matching. To avoid this
problem, the number of unique tags must be limited, which limits also the complexity available at each node. In this work, a
budget of about 10,000 CNFETs per node has been assumed, as estimated in [11]. Large scale randomness is the other funda-
mental condition of self-assembled technology: DNA tags allow controlled placement inside the node grid, but there is no
control over the placement of these grids in the whole network. As a consequence, other typical properties of regular net-
works cannot be guaranteed, e.g. being connected to a fixed number of neighbors, having a determined orientation and
so on. Finally, defect rates: while they are hardly tolerated in mask-based top-down design, the same nature of a bottom-
up self-assembly process cannot assume such a deterministic device placement process, thus defect tolerance is more a
design requirement than an exception to be avoided.

These aspects of a DNA self-assembly process lead to some important implications to be addressed when approaching to
the design of a nanoscale Network-on-Chip architecture: computational model should be based on a distributed network of
small processing and storage nodes, randomly placed and interconnected (see Fig. 1b). Proof-of-concept of such architectures
can be found for example in [5], where instruction and data operands are moved around the network in order to be pro-
cessed. In addition, independently of the particular policy chosen to route instruction and data packets, such networks must
be able to guarantee deadlock freedom without any prior assumption about the topology.

In this work, we introduce DiSR, a Distributed Segment-based approach to topology discovery and deadlock freedom in
large scale DNA self-assembled on chip networks. Our contribution aims to achieve the classical properties of a segment-
based approach [12] without requiring any topology graph, external defect map or centralized algorithm execution. The DiSR

approach is not intended to discover the ‘‘optimal’’ segment choice (ideally reachable with the knowledge of the topology
graph) but just to demonstrate a concrete model that can fit into such complex, irregular and large sized networks. It is
important to underline that, although we can assume as background an architecture similar to the one depicted in Fig. 1,
(a) (b)

Fig. 1. (a) Strands of complementary DNA tags self assemble to generate larger structures. (b) The resulting irregular topology of processing (P) and storage
(M) elements.

Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx 3
the DiSR topology discovery approach presented this work is more general and not strictly dependent on any underlying
computational model adopted.

The paper is organized as follows: in Section 2 we summarize the main approaches for topology agnostic deadlock free-
dom. Next, in Section 3 are described the main elements and the execution model of the proposed approach. Further details
about node behavior in relation to the execution model are provided in Section 4. In Section 5, simulations are carried out
with the open-source tool Nanoxim to demonstrate how DiSR preserves some of the main segment-based properties and
how compares to the tree-based approaches. Finally a draft of an architectural implementation is shown in Section 6 to eval-
uate the feasibility of the approach in terms of node complexity.
2. Background and contribution

Several works addressed the problem of topology agnostic deadlock freedom introducing virtual channels [13–15], but
while they show interesting performances, the low resources available to prevent deadlocks makes them not suitable for
the DNA self-assembled networks we are assuming as scenario. Other topology independent algorithms do not require
any virtual channel but exploit the concept of ‘‘turn prohibition’’. In particular, authors of [16] exploit the creation of a span-
ning tree of the topology, placing bidirectional restrictions to avoid that a packet can traverse a given link in both up and
down directions. The hierarchical nature of this approach can lead to an uneven traffic distribution, with many packets tra-
versing upper links (near to the root), but this is quite acceptable in classical wide area networks topologies with a limited
number of nodes. Other approaches such as FX [17] mitigate this issue, but the set of turn restrictions is still prefixed strictly
depending on the particular tree root selected. Other solutions try to approach the issue of irregular topologies by limiting
the number [18,19] or the location [20,21] of missing links. This restriction is clearly unacceptable given the hight-defect
rates of DNA self-assembled networks scenario. For the same reason, we also avoid considering solutions based on hard-
ware-redundancy to dynamically recover defects as in [22].

In [12] authors present an approach that solves these limitations setting turn restrictions locally, independently from
other restrictions. The whole network is partitioned into segments, and a bidirectional turn restriction can be freely chosen
within a segment in order to guarantee deadlock freedom while preserving network connectivity. This locality independence
property, removing the requirement of choosing a particular tree/root, would make this approach the best choice for the
given scenario; however, it still requires the knowledge of the whole network graph in order to find the segments.

The DiSR approach presented in this work is a first attempt to achieve the same goals of a segment based turn prohibition
requiring neither the knowledge of a topology graph nor centralized execution. In particular, DiSR implements segment dis-
covery and turn prohibition using a completely different mechanism, based on a distributed exchange of small setup packets
requiring a limited and scalable portion of the available resource budget. The following main features distinguish DiSR from
classic approaches to segment partitioning:

� No centralized entity is globally responsible and/or aware of what is going on, i.e. the status of the DiSR execution is col-
lectively distributed among the nodes.
� No defect map and/or topology graph is used as input, thus, the topology has to be discovered while segments are created.
� At the end of the execution, no segment list is created or stored anywhere: each node is only aware of being part of a

segment, ignoring the presence of other nodes in the same segment and also the presence of other segments in the
network.

3. DiSR overview

The main concept behind the turn prohibition method we propose in this work is the segment. A segment Sb is basically a
path of consecutive nodes and links, starting with a link attached to a node belonging to a different segment Sa and ending
with a link attached to a node of another segment Sc. In other words, a segment is a path connecting two other different seg-
ments. The example in Fig. 2 shows the segment with id 1.4, starting with a link connected to the node 9, traversing nodes 4,
3, 2 and ending with the link connected to node 1. Other segments depicted are, for example, 9.2 (link from 9, node 10, link to
node 3) and 9.3 (link from 9, node 8, link, node 7, link, node 6, link, node 5, link to node 1). Note also that starting/ending
links can coincide and a segment can also be formed by one single link (e.g. the case of 7.2 and 5.4). An exception to the rule
that a segment must connect two other segments is the first segment established in the network, called starting segment
which is a loop beginning/ending on the same node.

A detailed description of the DiSR execution model as depicted in Fig. 4 will be discussed in SubSection 3.3. Roughly
speaking, the execution phases consist of:

1. Injection of the DiSR process from an upper layer to set a bootstrap node.
2. Broadcasting and confirmation to create the first segment of the subnet.
3. Parallel segment requests starting from assigned nodes to discover other segments.
4. Processing of resulting segment confirmation/cancel packets.
5. Turn prohibition in each confirmed segment.
Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


Fig. 2. Example of segments.

4 V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx
This first work is explicitly focused on demonstrating the feasibility and scalability of DiSR in the particular scenario
assumed; for this reason we will not investigate the degree of freedom that the last of the above steps introduces, i.e. choos-
ing where to place the restriction in the context of a segment. This choice would strictly depend on the particular routing
strategy that will be used and could result in some interesting improvements. The scope of this work is understanding
how DiSR can implement a distributed topology discovery, mapping defects and creating a segment partitioning that will
be exploited in a second design phase which includes choosing and implementing a routing strategy. For this reason, since
we can safely assume that a random turn (e.g. the first) can be prohibited once each segment has been confirmed, the last
two execution phases will be addressed as one.

3.1. DiSR data structures

We distinct between two different kinds of data stored in each node: Dynamic Behavior Status (DBS) and Local Environment
Data (LED).

DBS information represent node status and is related to its current execution phase in the context of DiSR. The DBS can
have the following values:

� Free: a node that has not been yet considered by the DiSR algorithm.
� Bootstrap: a node which has been explicitly set as bootstrap node from an upper layer via.
� ActiveSearching: a node from which a new segments searching process has been started and not yet canceled or

confirmed.
� Candidate: a node currently candidate to be part of a segment, but not being itself the node from which the searching

process was started.
� CandidateStarting: same as above, but with the node considered as candidate for starting a segment.
� Assigned: a node for which the segment has been determined.

LED variables are a kind of instant snapshot of the execution of DiSR algorithm consisting in the following variables:

� segID: a value used to specify the segment to which the node has been assigned or is currently candidate to be part of.
� visited: a boolean value. When true then a segID different from NULL specifies the segment to which the node has been

assigned.
� tvisited: a boolean value. If true, the node is being considered as candidate for a segment, and the segID value specifies

the segment ID for which the node is candidate.
� link_visited[]: an array of values containing information about attached links (segID of the segment owning each link).

When NULL, the corresponding link has not yet been assigned.
� link_tvisited[]: an array of values representing information about attached links (segID of the segment for which

the link is candidate). When NULL, the link is not candidate for any segment, i.e. it has already been assigned or it
is free.
Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx 5
3.2. Message types required

The DiSR approach works with a distributed mechanism which is build upon an exchange of small control packets con-
taining the following fields:

� packet_type: encodes the meaning of the control packet.
� seg_ID: the id of the segment targeted by the DiSR control message.
� src_ID: the id of the node that originated the packet.
� TTL: a counter which makes the packet expire after a given number of retries.

With regard to the packet_type field, we can have the following control packets types:

� STARTING_SEGMENT_REQUEST: Injected by the bootstrap node when searching the first segment.
� STARTING_SEGMENT_CONFIRM: used when establishing the starting segment.
� SEGMENT_REQUEST: used to search candidates for a segment (not the first).
� SEGMENT_CONFIRM: used to establish a segment.
� SEGMENT_CANCEL: used to cancel the process of searching a segment along a specific link.

A quantitative analysis of the resources needed to implement and manage these structures is presented in Section 6
where it is discussed the impact of DiSR control logic and storage on the node’s hardware implementation.

3.3. Execution model

DiSR control packets described in the previous subsection trigger node events, which change DBS according to the current
value of LED variables and the type of packet received. The main DiSR phases, together with a reference to the particular sta-
tus transition involved are described in the following. As a convention, we used single letters to refer to one of the DBS tran-
sitions in Fig. 3 while the phases are visually represented in Fig. 4.

� Injecting bootstrap request: all nodes have an initial DBS status set to Free, except for a node with status Bootstrap,
set by some control signal from an upper layer via (a). When starting, this bootstrap node changes its status to Can-
didateStarting (b), and injects a STARTING_SEGMENT_REQUEST across one of its free links (Fig. 4a).

� Bootnode broadcasting: Each node receiving a STARTING_SEGMENT_REQUEST, when Free, forwards it to its free links
using a flooding mechanism and becoming CandidateStarting (g). Each of its free links is then marked as tvisited with
the segment id associated to the request. Note that a node that has already received a STARTING_SEGMENT_REQUEST
packet can simply ignore further packets associated to the same request, having already contributed to the flooding
(Fig. 4b).
f

g

h

h
f

l m

i

a

b

d

c

Fig. 3. DiSR node execution model.

Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Example of DiSR segment setup: nodes status is labeled as CandidateStarting (Cs), Candidate (C), Free (F), Assigned (A) or Bootstrap (B).

6 V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx
� Confirming the starting segment: when a STARTING_SEGMENT_REQUEST packet reaches the bootstrap node (from a
different link, of course), the starting segment is found. Then the bootstrap node sends back a STARTING_SEG-
MENT_CONFIRM packet along the link from which it received the STARTING_SEGMENT_REQUEST and becomes Assigned
(l). Each node receiving the confirmation does the same by changing its own status to Assigned (Fig. 4c). So the
confirmation packet is sent back from node to node and the starting segment is created (Fig. 4d).

� Injecting segment requests: Each node in the Assigned status can potentially initiate a new segment request. So it
check its links and if a free link is found it changes its status to ActiveSearching (c) and then sends a SEGMENT_REQUEST
across the free link (c) (see Fig. 4e). Note that each Assigned node can inject the request just after becoming Assigned,
i.e. it is not needed that the whole confirmation process in completed (Fig. 4f). Note also that nodes previously set to
CandidateStarting, when receive a SEGMENT_REQUEST can simply cancel their status and set themselves to Candidate
for that request, since this new request means that the first starting segment has already been found (h).

� Segment confirmation: The segment searching process is successful when an already Assigned node receives the
SEGMENT_REQUEST packet. Then, a SEGMENT_CONFIRM is sent back along the path that originated the request
(Fig. 4g), while the node remains Assigned (since it could confirm other segments). Each node previously set to Can-
didate for that segment id, when receives a confirmation packet changes its status to Assigned (m) and send back the
same confirmation. When this confirmation reaches the initiator of the request it changes its status from ActiveSearch-
ing to Assigned (d).

� Failing while searching a segment: this happen when a node receives a SEGMENT_REQUEST packet but matches one
of two the following conditions: the node is Free but has no more suitable free links (thus cannot forward the SEG-

MENT_REQUEST)(f); the node is already Candidate with another segment id, i.e. is part of another searching process. In
all these cases the node sends back a SEGMENT_CANCEL along the incoming link (see at the bottom of Fig. 4).

4. Detailed node behavior model

In this Section, we provide further details about DiSR execution model, describing the internal behavior implemented in
each node. Note that this also corresponds exactly to what should be implemented from the hardware perspective, as dis-
cussed in Section 6.

The LED variables (segID, visited, tvisited, link_visited[], link_tvisited[]), stored in each node, are initially set to NULL, so the
node and all its links are considered as Free. The only node that makes an exception is the bootstrap node, initialized in the
Bootstrap status. All the subsequent events happening at each node are consequence of its current dynamic status (DBS),
packets received and internal status (represented by the LED). Note that in the following, when using expression like ‘‘has
a free link’’ or ‘‘free node’’ we will assume the relationship between LED and DBS discussed in Section 3.1. Furthermore,
for each packet type all the cases not explicitly listed can simply be ignored since associated to invalid/inconsistent events
of the DiSR execution model. A complete list of these cases is described in the simulator source code available at [23].
Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx 7
4.1. Receiving a STARTING_SEGMENT_REQUEST

The request for the first segment should be managed differently since all nodes (except the bootstrap one) must forward
the packet using a broadcasting mechanism. This is necessary since the request packet must return the bootstrap node.
When a node receives a STARTING_SEGMENT_REQUEST, the following cases can happen:

� The node is Free: it should set itself to CandidateStarting and forward the packet along its free links, using broadcasting
and marking these links as tvisited with segID found in the packet.

� The node is CandidateStarting with the same segID and src_id of the packet is equal to the node id: this means that the
node was the initiator of the request, thus a starting segment has just been found and should be confirmed sending
back a STARTING_SEGMENT_CONFIRM packet.

� The node is CandidateStarting, with the same segID of the packet but the src_id field is different from the node id: since
the node is candidate with the same id, it means that it already accomplished the task of propagating that kind of
packets, thus can simply ignore the event dropping the packet.

� The node is Candidate, with a different segID: this simply means that the STARTING_SEGMENT_REQUEST just received is
deprecated, because the node has already accepted a non-starting segment request originated from another Assigned
node.

� The node is Assigned, with a different segID: same as the previous case.

4.2. Receiving a SEGMENT_REQUEST

When a node receives a SEGMENT_REQUEST, there are the following cases:

� The node is Assigned: a segment should be confirmed sending back a SEGMENT_CONFIRM packet.
� The node is Candidate: it should discard the packet sending back a SEGMENT_CANCEL.
� The node is Free and has free links: it marks itself as Candidate and forwards the SEGMENT_REQUEST to one of its free

links, according to some internal ordering.
� The node is CandidateStarting: same as being Free, since a segment request circulating in the network indicates that

the starting segment process has been completed.

Note that the main difference between confirming a STARTING_SEGMENT_REQUEST and confirming a SEGMENT_REQUEST
is that in the first case the node itself is included in the segment.

4.3. Receiving a SEGMENT_CONFIRM

When the node status is Candidate with a segID corresponding to the one indicated in the packet, the node set itself to
Assigned to the segment segID. Further, it should forward this packet to the link where the original SEGMENT_REQUEST packet
came from, so that all candidate nodes can learn the id of the segment they belong to. Then, LED should be updated from
tvisited to visited.

4.4. Receiving a SEGMENT_CANCEL

When a node receives a SEGMENT_CANCEL packet it means that the research for a segment along that path was unsuc-
cessful. If the node still has some other free link to try, it should forward a SEGMENT_REQUEST to the those links. A node
forwards back the SEGMENT_CANCEL packet along the link that originated the SEGMENT_REQUEST packet only when there
are no more free links to try. If this is the case, the node modifies its status from Candidate to Free and forwards the SEG-

MENT_CANCEL packet to the link from which the request was received. The process stops when the SEGMENT_CANCEL packet
reach the starting node that originated the request.

4.5. Intra-node vs inter-node parallelism

In the processes described above, we assumed that each node in the Assigned status can start a segment searching process
by injecting a SEGMENT_REQUEST. However, different choices could have been made when defining DiSR, these choices are
strictly related to which kind and level of parallelism should be supported. The approach adopted currently is that, although
the nature of DiSR is intrinsically parallel, the use of parallelism should not make things work in a too complex/uncontrol-
lable way. In other words, DiSR is parallel when needed, but it does not exploit parallelism as an ‘‘improving feature’’. Thus,
when not needed, things should be serialized. For example: a node with free links could start several segment requests asso-
ciated to the same segID, one for each free link, but serializing this operation, by investigating the free links in order, could be
a simpler solution. We refer to this DiSR design choice saying that we avoid intra-node parallelism. Note that, conversely,
avoiding inter-node parallelism could be more complex than allowing it: for example, we can imagine the effort generated
when trying to coordinate nodes so that a unique segment searching process is actually running in the whole subnet. Thus,
Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


8 V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx
in contrast to the intra-node parallelism, the inter-node parallelism is a structural property of the DiSR algorithm and should
not be avoided.
5. Simulation and results

In this section we will test the proposed DiSR approach to demonstrate its effectiveness and compare it against a topology
agnostic approach based on spanning trees and broadcasting [16], to measure how DiSR performs in covering the network
structure. Note that a direct comparison against the SR segment-based approach is not addressed here since, how described
in Section 1, our scenario assumes the non-feasibility of a centralized approach. However, all the properties of the centralized
approach should be considered as preserved for all the nodes reached by the distributed segment coverage of DiSR. The main
points that remain to be addressed are:

� how DiSR compares against the state-of-art tree based approach applied to an equivalent scenario,
� how DiSR scales with large networks,
� the feasibility of actual implementation of the required hardware on the limited node size assumed.

5.1. Nanoxim environment

In order to quantitatively and qualitatively evaluate the proposed approach a specific simulation environment has been
developed, resulting in the open-source and freely available project called Nanoxim [23]. Nanoxim is a SystemC tool based
on an almost rewritten version of the Noxim Network-on-Chip simulator [24]. While some complex features have been
removed (e.g. wormhole, congestion/topology aware routing and selection strategies) new features specifically tailored
for the nanoscale scenario were introduced, e.g. the ability to simulate a random network, the implementation of DiSR to
obtain the segment topology and the support for defective links and nodes.

5.2. Experimental setup

The following parameters have been taken into account while performing the DiSR simulation:

� Size of the network: number of nodes, on a range from 10 � 10 to 100 � 100 sized networks.
� % defective nodes: the probability that a node is not working, thus having all its links not able to be utilized during DiSR

setup.
� Bootstrap node: the node, from upper layer, that injects the DiSR process. When not explicitly investigating the impact

of each single bootstrap choice, a set representative regions have been considered, e.g. the central part of the network
and the corners.

To present the results, the following evaluation metrics have been adopted:

� Node coverage: this is the fraction of nodes that are assigned to a segment. In the ideal case, all the non defective nodes
should be assigned, so this metric is useful to show how some disconnected regions can negatively impact on the
whole DiSR effectiveness.

� Latency: this measures how the cycles required to complete the segment assignment scale for increasing network
sizes and defect rates.

� Bootstrap node effect: this evaluates the impact of the chosen bootstrap node on the node coverage.

Since the distribution of defects and thus the resulting topology is randomly generated, a set of simulations with different
seeds has been run for each system configuration. We found that 20 repetitions are required in order to obtain statistically
significant results.

5.3. Results

In this section we analyze the results in terms of node coverage and latency with different network sizes, defect rates and
bootstrap injection points. In particular Fig. 5 shows node coverage for DiSR and Reverse Path Forwarding (RPF) tree based
approach (as adapted in [25]) respectively. While the first aim of DiSR is not to reach the optimal coverage, we still can
observe quite good performances as compared to the tree based approach. For low defect rates, i.e. below 10%, both
approaches reach near ideal coverage for each of the tested network sizes. Higher defect rates seems to show more variance
for DiSR. For example, at the high 20% rate DiSR ranges from 60% to 75% while RPF remains stable at 75%. However, we can
consider this coverage sensibility at higher defect rates as still acceptable for this first, not yet optimized version of the pro-
posed approach. Note that defect rates beyond 25% lead to many disconnected regions of nodes that DiSR currently cannot
handle. This threshold can be intuitively related to the fact that, in the topologies simulated, a node has (on average) a
Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DiSR Coverage

Node Defect Rate

Ideal
10x10
30x30
50x50
100x100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Defect Rate

N
od

e 
C

ov
er

ag
e

N
od

e 
C

ov
er

ag
e

Ideal
10x10
30x30
50x50
100x100

(a) (b)

Fig. 5. DiSR (a) and RPF (b) node coverage.

V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx 9
cardinality of 4 connections to other nodes. This means that with a defect rate bigger than 25% a node has at least one of its
four paths as not-working, and this applies (on average) for each node, leading to higher probability of consecutive discon-
nected nodes, which eventually create disconnected regions. For example Fig. 6 shows a 30 � 30 network with a 25% defect
rate in which the bottom-left part cannot be reached due to disconnected regions. Note that the remaining defective nodes
belonging to connected regions are successfully surrounded by DiSR coverage; in any case, these defect levels should be con-
sidered as worst case scenarios, so the achieved coverage of 0.5 is a satisfying result for this first version of DiSR. On the other
hand, the network size seems to have a limited impact when defect rate does not introduce too many disconnected regions.

The number of cycles required to complete segment mapping process is shown in Fig. 7. In this case the comparison
against the tree-based approach shows better (lower) values at different defect rates. Rather than the absolute numbers,
what is more interesting to observe is how DiSR latency scales with network size. For example, moving from 900 to 2500
nodes, at an average defect rate of 0.15, leads to an increase of latency from 3000 to 4500 cycles. It should be noticed also
how for DiSR latency is increasing until the threshold of 0.25 is reached, meaning that the completion of the process is more
and more difficult due to the missing paths, but DiSR is still able to finish the segment discovery using the retry/cancel mech-
anisms described in the previous section. This initial behavior is not reported in the RPF based approach, which does not use
the same retry/cancel approach as DiSR and then suffers higher latency values.

After the 0.25 threshold, the impact of disconnected regions becomes predominant and both approaches become faster in
completing the covering process, since far less nodes can be actually reached.

Finally, Fig. 8 visually represents the stability of the approach against a different bootstrap node choice in a 10 � 10 net-
work. This is an important aspect to evaluate considering that one of the main advantages of DiSR against all the tree-based
approaches is the possibility of choosing whatever bootstrap node, without having to care about the role assumed in the
future by the chosen root node. In other words, after that the segments have been established, the bootstrap node is like
every other node, i.e. it is not center of a structure, and it is not an hotspot for the traffic distribution. The results in terms
of coverage, shown for low, medium and high defect profiles, demonstrate a relatively limited impact of the bootstrap node
choice in the low/medium scenarios, while a 30% instability is found for very high defect rates. This also sounds acceptable,
since when a lot of defective nodes are present, the particular position of the bootstrap node could lead to a completely dif-
ferent evolution in the DiSR setup process.

5.4. Other optimizations

Some optimization parameters, which demonstrated to improve the DiSR results, have been fixed to some reasonable
default values (see below) and are not subject to further investigations in this paper; once again the focus here is not the
optimal setup of segments, but just demonstrating a working approach. These parameters are:

� cycle_links: max number of retries across the set of links of each node. While searching for a free link due to an incom-
ing SEGMENT_REQUEST, the request itself is canceled after a given number of tries. This gives to the preceding node on
the path the chance to test a different route instead of waiting indefinitely. Default value is set to 1, i.e. each link is
tried one time.

� time to live (TTL): when a segment request is canceled along a certain path (using a SEGMENT_CANCEL), a TTL field is
decreased in the request packet, so that requests that have been denied too much times are canceled, even if free links
are available. This is not only an optimization to shorten requests’ processes, but also solves some critical situations in
which request packets are blocked in routing loops in a particular path.

� bootstrap_timeout: number of time units that a bootstrap node should wait before assuming that a livelock in the
starting segment process has occurred. In the worst case, we can imagine that the longest path required is the one
returning to bootstrap node after having traveled across all the links. So, although this is just an extreme situation,
a good upper limit can be safely be set to N � N.
Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


Fig. 6. Covered regions in a 30 � 30 network with 25% of defects.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2000

4000

6000

8000

10000

12000

14000

16000

18000

Node Defect Rate

La
te

nc
y

10x10
30x30
50x50
100x100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Node Defect Rate

La
te

nc
y

10x10
30x30
50x50
100x100

(a) (b)

Fig. 7. Latency of DiSR (a) vs tree based RPF (b).

10 V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx

Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bootstrap Node

no
de

 c
ov

er
ag

e

0
0.05
0.15
0.30

Fig. 8. Effect of bootstrap node.

V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx 11
� bootstrap_immunity: in order to avoid the failure of the whole DiSR setup process, a bootstrap node should not have
defective links. Enabling this optimization, a bootstrap node is immune to defects. We may think about a pre-boot-
strap phase that properly selects (from upper layer via) a bootstrap node which is tested as properly connected. We
enabled this optimization, however empirical tests have shown us that only simulations using bootstrap nodes placed
on edges would be heavily affected by similar issues since these nodes start with a lower number of links, e.g. corner
nodes could only have two connected directions, so even a single defective link could prevent a STARTING_SEGMENT
packet from coming back to the bootstrap node to close the loop and create the first segment.

6. Hardware implementation

A possible hardware implementation of DiSR algorithm will be described in this section. Fig. 9 depicts the general struc-
ture of a node in the particular scenario of DNA nano Network-On-Chip. In particular, such a node is composed of the fol-
lowing fundamental elements:

� I/O buffers-transceivers: These elements, one for each port, are responsible for data transmission with neighbors
nodes. The packets received or sent are stored in specific buffers named input and output buffers respectively.

� Switch matrix: Driven by a switch controller, it enables reciprocal connections among devices inside the node. Before
segments’ creation, this controller receives information from DiSR block. After this phase, the switch controller will be
driven by the block implementing the routing algorithm. The Switch Matrix is essentially composed of a series of mul-
tiplexers and demultiplexers.
Fig. 9. A possible node structure tailored for a DNA nano network-on-chip.

Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


12 V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx
� Processing Element (PE): It is strictly related to the functionality and role that the node cover inside a given network
(e.g. being a computation or storage node).

� DiSR-routing: The DiSR block contains all the hardware, control logic and configuration registers, needed by the imple-
mentation of the proposed approach. The routing algorithm receives information from DiSR which indicates the status
of segments related to a particular node. Routing operations will take into account these information to obtain deadlock
freedom. Both Routing and DiSR are connected to the Switch Matrix in order to receive packets from the input buffer.
Since the packets are processed one at a time, a specific arbiter should be present within the Switch Matrix controller.

6.1. DiSR architecture

To give a basic estimate of the overhead needed, we focus on DiSR- specific components namely the control logic and
configuration registers needed to implement DiSR. Fig. 10 shows an architecture sketch, which mainly consists in the follow-
ing building elements:

� DBS block: It takes trace of the DBS state machine, consisting of a 3-bit register (to cover six DBS values) and the
required combinational logic. This block receives signals from stored packets in order to decode the packet type,
and from the control circuitry to change its status. The bootstrap node is selected by setting the boot signal to high
during the initialization phase.

� LED registers: A set of registers stores the LED defined in Section 3. In the link_visited[] table, we defined two specific
registers named tflag and busy. While the first one indicates if the specific port of a segment is already candidate or
assigned, the second one records if a specific port is already visited or tvisited.

� Control circuitry: This circuitry decodes incoming packet, LED registers and DBS, updating them when required. This
block drives LED register according with write enable (WE) or read enable (RE) signals. Then, the resulting Ctrl-Out
drives the other communication resources to actuate DiSR routing operations.

� Packager: Essentially it is a set of registers and multiplexers. Starting from an incoming packet stored in the input
buffer, it updates packet’s content before retransmission to a destination node. In some cases, this circuitry builds
the packet from scratch e.g. when a node is bootstrap and for the first time it should inject a STARTING_SEG-
MENT_REQUEST. Fig. 11 depicts the architecture of this block. When a packet is created for the first time, the multi-
plexers driven by the controller, will select information incoming from an internal node such as the src_id. In this
situation the TTL field should be reset to its initial value and the segID is composed of the node ID and by the output
port identification number.

While the elements mentioned above are part of the DiSR circuitry, the other devices depicted in Fig. 10 like the multi-
plexer and demultiplexer are implemented outside DiSR. In particular, such components will be inside the Switch Matrix (see
Fig. 9).
Fig. 10. DiSR block architecture.

Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx 13
All the blocks described above, react with the rising edge of the clock signal. An asynchronous system reset signal is also
present to restore all registers to their default values. When this signal is set, DBS state machines for each network node are
set as Free. Fig. 12 shows the pipeline structure of the DiSR architecture. Packets incoming from neighbor nodes (or generated
locally) are sent to the DBS state machine in order to ensure the status commutation. While DBS updates its state, in the next
clock cycle the control circuitry will update LED registers status and will drive the Switch Matrix in order to send the packets
to the right output buffer.
6.2. Synthesis results: timing, area and power consumption considerations

As discussed above, one of the main design challenges of DNA Self-Assembled systems is the limited number of resources
available to implement both computations and routing decisions for each node. Assuming a budget of 104 CNFETs for each
network’s node [11] we estimated the resources required to implement the entire DiSR block. The RTL description of the cir-
cuitry described in the last section (with an hardware description language) has been written and synthesized at gate-level
using Synopsys Design Compiler with a generic technology library (GTECH). Considering the specific layout of each single logic
element (NAND, full-adder, latch etc.), it has been possible to get a rough estimation of the number of transistors necessary
to implement DiSR logic. Fig. 13 shows the results of synthesis in terms of number of devices (CNFETs) versus the number of
network nodes while the network scales up from 10� 10 to 100� 100 nodes.

In particular, Fig. 13 shows that the proposed implementation occupies about 17.5% of the node budget. The main con-
tribution is due to the controller circuitry followed by LED registers. Further, more than the absolute number of devices itself,
it is interesting to observe that the complexity of the circuitry necessary to implement DiSR increases with a slowly
growing trend. This is due to the relatively simple logic of DiSR which is almost coded with scalable storage structures.
For example, the number of registers implementing the link_visited[] and link_tvisited[] table follow the logarithmic function
Nreg ¼ Nport � log2ðNÞ where Nport is the number of the routers ports and N is the number of networks nodes.

In order to have an idea of the maximum working clock frequency for the implemented circuitry, timing results can be
obtained from a gate-level netlist. Since a complete technology library useful for commercial synthesis tool (e.g. Design Com-
piler) is not available for this particular technology, we have synthesized the RTL description of DiSR, with a standard 32 nm
CMOS library, obtaining a delay of about sDiSR ¼ 10 FO4 (fan-out of four). Considering the results obtained in [26], which
reports the ratio in terms of FO4 between a standard 32 nm CMOS technology and a carbon nanotube one, a rough delay
estimation can be calculated. In particular in such work has been reported a ratio of:
Please
Eng (2
FO4CMOS

FO4CNFET
¼ 2 ð1Þ
Considering that FO4 CMOS is about 30 ps, and the results of last equation, a FO4 for the CNFET case is equal to about 15 ps,
the working frequency can be computed as:
fclk ¼
1

Tmax
¼ 1

sDiSR � FO4CNFET
¼ 1

10 � 15 � 10�12 ¼ 6:6 GHz ð2Þ
where sDiSR is expressed in terms of FO4.
With regard to the power consumption of the whole set of DiSR devices: due to the fact that DiSR circuitry will be active

only once during system startup, an accurate power analysis related to switching activity is not provided in this work. After
the setup phase, when all segments are mapped, the DiSR block will stop its activity passing all the information related to
segments to the routing algorithm. For this reason the dynamic power falls to zero and the only consumption is due to leak-
age effects. A comparison between the proposed circuitry and the state of the art implementation for the RPF algorithm, pre-
sented in [25], can show that there is not an appreciable discrepancy in terms of transistors cost and power consumption. In
facts, RPF requires an overhead of about 1692 CNFET for a 100� 100 network. Furthermore, regarding the power consump-
tion, also the RPF approach has a setup phase beyond which, the consumption tends to zero.
Fig. 11. Packager block.

cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


Fig. 12. Pipeline description of DiSR operations.

Fig. 13. Network size vs number of CNFETs necessary to implement the DiSR circuitry.

14 V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx
7. Conclusions

In this work, we presented DiSR, an initial attempt of achieving a segment based topology discovery in a distributed
self-assembled nanoscale scenario. We demonstrated how DiSR can accomplish the aim of finding a segment coverage of
the network without requiring any centralized approach that would request the graph topology as input. A draft hardware
implementation has been presented to evaluate the impact on the limited node size typical of the assumed scenario. From a
high-level perspective, future works will focus on investigating DiSR resulting networks in order to support the execution of
massively parallel applications, while continuing to develop a detailed low level hardware implementation on a DNA grid
using the appropriate nano device models.
References

[1] ITRS 2013 edition. International technology roadmap for semiconductors; 2013.
[2] Kavi K, Nwachukwu I, Fawibe A. A comparative analysis of performance improvement schemes for cache memories. Comput Electr Eng

2012;38(2):243–57. http://dx.doi.org/10.1016/j.compeleceng.2011.12.008.
[3] Sibai FN. Design and evaluation of low latency interconnection networks for real-time many-core embedded systems. Comput Electr Eng

2011;37(6):958–72. http://dx.doi.org/10.1016/j.compeleceng.2011.08.008.
[4] Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH. Dna-templated self-assembly of protein arrays and highly conductive nanowires. Science

2003;301(5641):1882–4.
[5] Patwardhan JP, Dwyer C, Lebeck AR, Sorin DJ. Nana: a nano-scale active network architecture. J Emerg Technol Comput Syst 2006;2(1):1–30. http://

dx.doi.org/10.1145/1126257.1126258.
[6] Pistol C, Chongchitmate W, Dwyer C, Lebeck AR. Architectural implications of nanoscale integrated sensing and computing. In: Proceedings of the 14th

international conference on architectural support for programming languages and operating systems. ASPLOS, vol. XIV. New York (NY, USA): ACM;
2009. p. 13–24. http://dx.doi.org/10.1145/1508244.1508247.

[7] Haselman M, Hauck S. The future of integrated circuits: a survey of nanoelectronics. Proc IEEE 2010;98(1):11–38. http://dx.doi.org/10.1109/
JPROC.2009.2032356.

[8] Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science 2001;294(5545):1317–20.
[9] Cui Y, Lieber CM. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001;291(5505):851–3.

[10] Seeman NC. Dna engineering and its application to nanotechnology. Trends Biotechnol 1999;17(11):437–43.
[11] Liu Y, Dwyer C, Lebeck AR. Routing in self-organizing nano-scale irregular networks. J Emerg Technol Comput Syst 2008;6(1):3:1–3:21. http://

dx.doi.org/10.1145/1721650.1721653.
[12] Mejia A, Flich J, Duato J, Reinemo S-A, Skeie T. Segment-based routing: an efficient fault-tolerant routing algorithm for meshes and tori. In:

International parallel and distributed processing symposium, Rhodos, Grece; 2006.
Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2011.12.008
http://dx.doi.org/10.1016/j.compeleceng.2011.08.008
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0020
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0020
http://dx.doi.org/10.1145/1126257.1126258
http://dx.doi.org/10.1145/1126257.1126258
http://dx.doi.org/10.1145/1508244.1508247
http://dx.doi.org/10.1109/JPROC.2009.2032356
http://dx.doi.org/10.1109/JPROC.2009.2032356
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0040
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0045
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0050
http://dx.doi.org/10.1145/1721650.1721653
http://dx.doi.org/10.1145/1721650.1721653
http://dx.doi.org/10.1016/j.compeleceng.2014.09.003


V. Catania et al. / Computers and Electrical Engineering xxx (2014) xxx–xxx 15
[13] Abbas A, Ali M, Fayyaz A, Ghosh A, Kalra A, Khan SU, et al. A survey on energy-efficient methodologies and architectures of network-on-chip. Comput
Electr Eng 2014(0). http://dx.doi.org/10.1016/j.compeleceng.2014.07.012.

[14] Skeie T, Lysne O, Flich J, Lopez P, Robles A, Duato J. Lash-tor: a generic transition-oriented routing algorithm. In: Proceedings of the tenth international
conference on parallel and distributed systems, 2004 (ICPADS 2004). IEEE; 2004. p. 595–604.

[15] Koibuchi M, Jouraku A, Watanabe K, Amano H. Descending layers routing: a deadlock-free deterministic routing using virtual channels in system area
networks with irregular topologies. In: Proceedings of the international conference on parallel processing, 2003. IEEE; 2003. p. 527–36.

[16] Patwardhan JP, Dwyer C, Lebeck AR, Sorin DJ. Evaluating the connectivity of self-assembled networks of nano-scale processing elements. In: IEEE
international workshop on design and test of defect-tolerant nanoscale architectures (NANOARCH 05); 2005.

[17] Sancho JC, Robles A, Duato J. A flexible routing scheme for networks of workstations. In: High performance computing. Springer; 2000. p. 260–7.
[18] Gomez ME, Duato J, Flich J, Lopez P, Robles A, Nordbotten NA, et al. An efficient fault-tolerant routing methodology for meshes and tori. Comput

Architect Lett 2004;3(1). 3-3.
[19] Koibuchi M, Matsutani H, Amano H, Pinkston TM. A lightweight fault-tolerant mechanism for network-on-chip. In: Proceedings of the second ACM/

IEEE international symposium on networks-on-chip. IEEE Computer Society; 2008. p. 13–22.
[20] Flich J, Duato J. Logic-based distributed routing for nocs. Comput Architect Lett 2008;7(1):13–6.
[21] Liu C, Zhang L, Han Y, Li X. A resilient on-chip router design through data path salvaging. In: Proceedings of the 16th Asia and South Pacific design

automation conference. IEEE Press; 2011. p. 437–42.
[22] Ebrahimi M, Daneshtalab M, Plosila J, Tenhunen H. Minimal-path fault-tolerant approach using connection-retaining structure in networks-on-chip.

In: 2013 Seventh IEEE/ACM international symposium on networks on chip (NoCS); 2013. p. 1–8. http://dx.doi.org/10.1109/NoCS.2013.6558401.
[23] Patti D. Nanoxim: nano network-on-chip simulator. <http://https://code.google.com/p/nanoxim/>.
[24] Fazzino F, Palesi M, Patti D. Noxim: network-on-chip simulator. <http://noxim.sourceforge.net>.
[25] Jaidev Patwardhan P, Chris D, Alvin RL. Design and evaluation of fail-stop self-assembled nanoscale processing elements. In: IEEE international

workshop on design and test of defect-tolerant nanoscale architectures (NANOARCH06); 2006.
[26] Deng J, Patil N, Ryu K, Badmaev A, Zhou C, Mitra S, Wong HSP. Carbon nanotube transistor circuits: circuit-level performance benchmarking and

design options for living with imperfections. In: Solid-state circuits conference, 2007 (ISSCC 2007). Digest of technical papers. IEEE International; 2007.
p. 70–588.

Vincenzo Catania received the Laurea degree in Electrical Engineering from the University of Catania, Italy, in 1982. Until 1984, he was responsible for
testing microprocessor system at STMicroelectronics, Catania. He is a full professor of computer science. His research interests include performance and
reliability assessment in parallel and distributed system, VLSI design, low power design, and fuzzy logic.

Andrea Mineo received the BSc and MSc degrees in Electronic Engineering from the University of Catania, Italy, in 2010 and 2013, respectively, and is
currently pursuing the PhD degree in Systems, Energy, Computer and Telecommunications Engineering at the University of Catania. His current research
interests are VLSI systems, Network-on-Chip architectures and emerging interconnect technologies for on-chip networks.

Salvatore Monteleone is a post-doctoral research assistant at the Department of Electrical, Electronic and Computer Engineering, University of Catania,
Italy. He obtained the BSc (2007) and MSc (2010) in Computer Engineering at University of Catania where he also completed the PhD course in Com-
munications and Computer Engineering (2014). His interests comprehend cooperative systems, user-centric systems and Network-on-Chip architectures.

Davide Patti received the Laurea and PhD degrees in computer engineering from the University of Catania, Italy, in 2003 and 2007, respectively. His
research focuses on Design Space exploration of VLIW systems, Network-on-Chip architectures, DNA self-assembled networks and Human-computer
interfaces. He is currently a research assistant at University of Catania.
Please cite this article in press as: Catania V et al. Distributed topology discovery in self-assembled nano network-on-chip. Comput Electr
Eng (2014), http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

http://dx.doi.org/10.1016/j.compeleceng.2014.07.012
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0070
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0070
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0075
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0075
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0085
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0090
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0090
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0095
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0095
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0100
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0105
http://refhub.elsevier.com/S0045-7906(14)00231-6/h0105
http://dx.doi.org/10.1109/NoCS.2013.6558401
http://https://code.google.com/p/nanoxim/
http://noxim.sourceforge.net
http://dx.doi.org/10.1016/j.compeleceng.2014.09.003

	Distributed topology discovery in self-assembled nano network-on-chip
	1 Introduction and motivation
	2 Background and contribution
	3 DiSR overview
	3.1 DiSR data structures
	3.2 Message types required
	3.3 Execution model

	4 Detailed node behavior model
	4.1 Receiving a STARTING_SEGMENT_REQUEST
	4.2 Receiving a SEGMENT_REQUEST
	4.3 Receiving a SEGMENT_CONFIRM
	4.4 Receiving a SEGMENT_CANCEL
	4.5 Intra-node vs inter-node parallelism

	5 Simulation and results
	5.1 Nanoxim environment
	5.2 Experimental setup
	5.3 Results
	5.4 Other optimizations

	6 Hardware implementation
	6.1 DiSR architecture
	6.2 Synthesis results: timing, area and power consumption considerations

	7 Conclusions
	References


