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The Hofstadter energy spectrum provides a
uniquely tunable system to study emergent topo-
logical order in the regime of strong interactions.
Previous experiments, however, have been lim-
ited to the trivial case of low Bloch band filling
where only the Landau level index plays a signif-
icant role. Here we report measurement of high
mobility graphene superlattices where the com-
plete unit cell of the Hofstadter spectrum is ac-
cessible. We observe coexistence of conventional
fractional quantum Hall effect (QHE) states to-
gether with the integer QHE states associated
with the fractal Hofstadter spectrum. At large
magnetic field, a new series of states appear at
fractional Bloch filling index. These fractional
Bloch band QHE states are not anticipated by
existing theoretical pictures and point towards a
new type of many-body state.

In a 2D electron gas (2DEG) subjected to a magnetic
field, the Hall conductance is generically quantized when-
ever the Fermi energy lies in a gap1. The integer quantum
Hall effect (IQHE) results from the cyclotron gap that
separates the Landau energy levels (LLs). The longitu-
dinal resistance drops to zero, and the Hall conductance
develops plateaus quantized to σXY = νe2/h, where ν,
the Landau level filling fraction, is integer valued. When
the 2DEG is modified by a spatially-periodic potential,
the LL’s develop additional subbands separated by mini-
gaps, resulting in the fractal energy diagram known as
the Hofstadter butterfly2. When plotted against normal-
ized magnetic flux, φ/φo, and normalized density, n/no,
representing the magnetic flux quanta and electron den-
sity per unit cell of the superlattice, respectively, the frac-
tal mini-gaps follow linear trajectories3 according to a
Diophantine equation, n/no = tφ/φo + s, where s and
t are integer valued. s is the Bloch band filling index
associated with the superlattice and t is a similar index
related to the gap structure along the field axis4 (in the
absence of a superlattice, t reduces to the LL filling frac-
tion). The fractal mini-gaps give rise to QHE features at
partial Landau level filling, but in this case t, rather than
the filling fraction determines the quantization value1,5,
and the Hall plateaux remain integer valued.

In very high mobility 2DEGs, strong Coulomb interac-
tions can give rise to many-body gapped-states also ap-
pearing at partial Landau fillings6–8. Again the Hall con-
ductance exhibits a plateau, but in this case quantized to
fractional values of e2/h. This effect is termed the frac-

tional quantum Hall effect (FQHE), and represents an
example of emergent behaviour in which electron inter-
actions give rise to collective excitations with properties
fundamentally distinct from the fractal IQHE states. A
natural theoretical question arises regarding how inter-
actions manifest in a patterned 2DEG9–12. In particular,
since both the FQHE many-body gaps, and the single-
particle fractal mini-gaps, can appear at the same filling
fraction, it remains unclear whether the FQHE is even
possible within the fractal Hofstadter spectrum13–15. Ex-
perimental effort to address this question has been lim-
ited owing to the requirement of imposing a well-ordered
superlattice potential while preserving a high carrier
mobility16–18.

Here we report a low temperature magnetotransport
study of fully encapsulated h-BN/graphene/h-BN het-
erostructures, fabricated by van der Waals (vdW) assem-
bly with edge contact19 (see Methods). A key require-
ment to observe the Hofstadter butterfly is the capabil-
ity to reach the commensurability condition in which the
magnetic length, lB =

√
~/eB (~ is Planck’s constant, e

the electron charge and B the magnetic field) is compara-
ble to the wavelength of the spatially periodic potential,
λ. For experimentally accessible magnetic fields this re-
quires a superlattice potential with wavelength of order
tens of nanometers. In this regard Graphene/h-BN het-
erostructures provide an ideal system since at near zero
angle mismatch, the slight difference in lattice constants
between the graphene and BN crystal structures gives
rise to a moiré superlattice with a period of ∼14 nm20–23.
Moreover, we find that in our vDW assembly technique,
in which the graphene/BN interface remains pristine19,
alignment between the graphene and BN can be achieved
by simple application of heat. Fig. 1c shows an exam-
ple of a heterostructure that was assembled with random
(and unknown) orientation of each material. After heat-
ing the sample to ∼ 350 oC, the graphene flake translates
and rotates through several microns, despite being fully
encapsulated between two BN sheets. This behaviour
has been observed in several devices, in each case result-
ing in a moire wavelength ranging between 10 − 15 nm
(indicating less than 2o angle mismatch20). We postu-
late that the thermally induced motion proceeds until
the macro-scale graphene flake finds a local energy mini-
mum, corresponding to crystallographic alignment to one
of the BN surfaces24, however, a full discussion of the me-
chanics of this process is beyond the scope of the present
manuscript and will be the focus of a future study.
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FIG. 1. (a) Zero field resistance versus gate bias measured in a BN encapsulated graphene device with a ∼10 nm moiré
superlattice. Inset left is a false-coloured optical image showing macroscopic motion of the graphene after heating. Inset right
shows the gap measured by thermal activation at the CNP and hole satellite peak positions, across 4 different devices (see SI).
Both gaps are observed to vary continuously with rotation angle. (b) Hall conductance plotted versus magnetic field and gate
bias (upper panel) and longitudinal resistance versus normalized field and density (bottom panel) for the same device as in (a).
(c) Simplified Wannier diagram labelling the QHE states identified in (b). Families of states are identified by colour as follows:
Black lines indicate fractal IQHE states within the conventional Hofstadter spectrum, including complete lifting of spin and
valley degrees of freedom. Blue lines indicate conventional FQHE states. Red lines indicate anomalous QHE states exhibiting
integer Hall quantization, but corresponding to a fractional Bloch index (see text)

Fig. 1a shows the resistance versus density at zero
applied magnetic field for a device with moiré wave-
length ∼ 10 nm (see SI for more details). In addi-
tion to the usual peak in resistance at the zero-density
charge neutrality point (CNP), two additional satellite
peaks appear at equidistant positive and negative gate
bias − characteristic signatures of electronic coupling to
a moiré superlattice20–22. The CNP peak resistance ex-
hibits thermally activated behaviour, and exceeds 100 kΩ
at low temperature, indicating a moiré-coupling induced
bandgap23–25. The gap varies continuously with ro-
tation angle, consistent with previous studies of non-
encapsulated graphene23. At zero angle the energy gap
measured by transport is equivalent to the optical gap26,
providing further indication of the high quality device
realized by vdW assembly. Unlike previous studies of en-
capsulated devices22,24, we find that the gap remains ro-
bust despite the graphene being covered with a top BN
layer. The precise origin of the gap in h-BN/graphene

heterostructures remains uncertain27, and further exper-
imental and theoretical studies will be required to resolve
the differences in the gap magnitude and correlation with
twist angle that have been reported so far.

Fig. 1b shows the longitudinal resistance and trans-
verse Hall conductance for the same device as in Fig.
1a. The high quality of the device reveals a rich com-
plexity in the transport signatures. A sequence of re-
peated mini-fans, resembling a repeated butterfly in the
hall conductance map, show clear evidence evidence of
the fractal nesting expected from the Hofstadter spec-
trum. In Fig. 1c, a simplified Wannier diagram is shown
in which the positions of the most prominent QHE states
are plotted against normalized flux and normalized den-
sity axes. Light grey lines indicate all possible gap trajec-
tories according to the Diophantine equation, where we
have assumed that both spin and valley degeneracy may
be lifted such that s and t are allowed to take any integer
value (for clarity the range is restricted to |s, t| = 0...10).
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FIG. 2. (a)Longitudinal resistance versus Landau filling frac-
tion corresponding to a high field region of data from Fig.
1b. (b) Hall conductance (upper panel) and longitudinal re-
sistance (lower panel) corresponding to horizontal line-cuts
within the dashed region in (a). Conductance plateaus iden-
tified in the low field and high field limits are labelled blue
and red, respectively (a). Hall conductance versus magnetic
field at fixed filling fraction showing evolution from FQHE
plateaus to integer value plateaus.

Black, blue and red lines trace QHE features identified
in our experimental data according to the usual require-
ment of observing a minimum in longitudinal resistance
concomitant with a quantized plateau in the Hall con-
ductance. Three distinct families of states are identi-
fied, corresponding to generalized IQHE states associated
with the Hofstadter spectrum (black lines); conventional
FQHE sates (blue lines), and anomalous sates that do
not fit within either of these descriptions (red lines). In
the remainder of this manuscript we focus our discussion
on the FQHE and anomalous sates.

FQHE states are characterized by a longitudinal resis-
tance minimum occurring at a fractional Landau filling
index, with the corresponding Hall conductance plateau
quantized to the same fractional value, and with the
gap trajectory in the Wannier diagram projecting to
n/no = 0. The FQHE states are observed at all m/3 fill-
ing fractions in the lowest and first excited Landau level,
where m is integer valued. The observation of a well de-
veloped 5/3 state is consistent with previous studies of
monolayer graphene in which a zero field bandgap was
reported23,25, and is presumably due to the lifting of the
valley degeneracy that results from coupling to the moiré
pattern11.

From Fig. 1c it can be seen that the FQHE states
span only a finite range of perpendicular magnetic field.

In Fig. 2a, this is shown in more detail where a selected
region of the longitudinal resistance from Fig. 1b, is re-
plotted against magnetic field on the vertical axis and
Landau filling fraction along the horizontal axis. Select
line traces from this diagram, corresponding to varying
filling fraction at constant magnetic field, are addition-
ally shown in Fig. 2b. For simplicity we focus on the
4/3 state as a representative example of the general be-
haviour. At B = 30 T the Hall conductance at filling
fraction 4/3 is well quantized to σXY = 4/3(e2/h). Upon
increasing to B = 34 T this state has completely disap-
peared, and by B = 40 T a Hall plateau has reemerged,
but quantized to a new value σXY = 1(e2/h). In the
high field state there is also a shift in the apparent filling
fraction, with the integer plateau no longer coincident
with 4/3 filling (Fig. 2b). We interpret the apparent
phase transition to be the result of a competition with
a fractal mini-gap state. This is supported by exam-
ining the relative strength of the QHE features on ei-
ther side of the transition as a qualitative measure of
relative gap size; the high-field integer-valued state ex-
hibits a significantly better-developed longitudinal resis-
tance minimum, and wider Hall plateau (indicative of a
larger gap) than the lower-field FQHE state. Taken to-
gether, these observations provide experimental evidence
supporting two theoretical predictions13–15: (i) the frac-
tal Hofstadter spectrum can support Laughlin-like FQHE
states even at field strengths approaching the commensu-
rability condition (ii) at filling fractions in which a con-
ventional FQHE and a Hofstadter mini-gap state coexist,
the state with the larger associated bandgap is the one
which emerges.

Next we discuss the anomalous QHE features associ-
ated with the red lines in Fig. 1c. In Fig. 3a, a reduced
Wannier plot is shown in which only these anomalous
features are replotted (solid red lines), together with a
dashed line showing the projection to the n/no axis. Lin-
ear fits to the RXX minimum position versus magnetic
field (see SI) indicate that these states follow a trajec-
tory with an integer-valued slope, t, but project to non-
integer valued intercepts, s. Fig. 3b demonstrates un-
ambiguously that these features corresponding to QHE
features with well quantized Hall plateaus, and further
that the quantization value corresponds to the t value,
as expected form the Diophantine equation. Determin-
ing the fractional s number from the n/no intercept of
the Wannier plot is imprecise since this depends on cal-
culating the density. Nonetheless, within experimental
uncertainty (see SI), the fractional intercepts appear to
cluster around values of 1/3 and 1/2 (Fig. 3a).

Fig. 3c shows a cartoon summary of this result. In the
regime of very large magnetic field, in addition to the
conventional fractional quantum Hall effect we observe
new series of states, outside of the single particle band-
structure as described by the Diophantine equation, and
coinciding with a fractional Bloch band index. The ob-
servation of a fractional Bloch band QHE (FBQHE) de-
scribed by integer t but fractional s numbers may have
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FIG. 3. (a) Wannier diagram showing only the anomalous features from Fig 1. Brackets label the corresponding Bloch band, s,
and Landau band, s, numbers. Dashed line shows the linear projection to the n/no axis. (b) Hall conductance and longitudinal
resistance versus versus normalized density, measured at fixed magnetic field, B = 40T showing transport signatures of select
gap states from (a). The (s, t) numbers determined from the n/no intercept (s) and Hall quantization value (t) are labelled in
the figure for each QHE plateau. (c) Cartoon summary illustration of the energy bandstructure evolution with magnetic field in
the case of no superlattice (left) and with a superlattice (right), and in the limit of no interactions (top) and strong interactions
(bottom): (i) With no superlattice the DOS is continuous at zero magnetic field. A cyclotron gap develops with finite magnetic
field indicated by white against a coloured background. (ii) In the presence of a large wavelength superlattice, the Bloch band
edge is accessible by field effect gating. Hofstadter minigaps evolve from this band edge, intersecting the conventional Landau
levels at large magnetic field. (iii) With no superlattice present, interactions give rise to the fractional quantum Hall effect,
appearing also as sub-gaps within the Landau level, but projecting to zero energy. (iv) In the regime of both strong interactions
and large wavelength superlattice, we observe a new set of gaps that do not correspond to either the IQHE of single particle
gaps, or the conventional many-body FQHE gaps. These are defined by integer valued Hall quantization, but projecting to
fractional Bloch band filling indices.

several possible origins. We note that at B = 30 T,
the Coulomb energy is ∼ 80 meV ((ECoulomb = e2/εlB ,
where we assume the dielectric constant to be 4). This is
similar in magnitude to the superlattice potential28, sug-
gesting that interactions play an equivalent role. Recent
theoretical consideration of graphene superlattices indeed
showed15 that electron interactions may open a gap con-
sistent with a fractional s number. However, the nature
of the associated ground state was not identified. Pre-
viously, it was predicted that electron interactions may
drive a charge density wave (CDW) type modulation of
the electron density, commensurate to the superlattice
but with a larger period29. A superstructure with 3 times
the moiré unit cell area (such as a

√
3×
√

3 Kekule distor-
tion) could explain n/no intercepts of 1/3, whereas a dou-

bling of the superlattice cell could explain 1/2 intercepts.
In this regard our observation may resemble the reentrant
QHE seen in high mobility GaAs30, also believed to result
from a CDW phase. Alternatively, one interpretation of
the Wannier diagram is to consider the mini-gaps as a
sequence of mini Landau fans, residing in a local reduced
magnetic field B′ = B − Bφ/φo=1/m, where φ/φo = 1/m
(or equivalently 1 − 1/m by symmetry) labels regions
of high density of mini-gap crossing. Recent bandstruc-
ture calculation of moiré-patterned graphene11 indicates
that the mini-fans are not exact replicas but instead can
exhibit a local degeneracy with additional Dirac points
emerging near φ/φo = 1/m. The FBQHE states may
therefore result from an interaction-driven breaking of
this degeneracy, similar to quantum Hall ferromagnetism.
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Finally, we consider that within the mini-fan picture, the
FBQHE states resemble the FQHE effect in that they
follow trajectories that evolve along fractional filling of
the mini-fan LL’s, projecting to the B′ = 0 center of
the min-fan (see SI). However, both the slope and corre-
sponding Hall conductance plateaux are integer valued.
A complete understanding of our findings will require

a theory that accounts for both the observed fractional
Bloch band numbers, and simultaneously the associated
Hall conductance value. Experimentally, possible ground
states could be distinguished by a local probe of the den-
sity of states, since for example a CDW phase exhibits
broken translation symmetry unlike the Laughlin FQHE
state.
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B 89, 075401 (2014).

12 Apalkov, V. M. & Chakraborty, T. Gap structure of
the Hofstadter system of interacting Dirac fermions in
graphene. Phys. Rev. Lett. 112, 176401 (2014).

13 Kol, A. & Read, N. Fractional quantum Hall effect in a
periodic potential. Phys. Rev. B 48, 8890–8898 (1993).

14 Pfannkuche, D. & Macdonald, A. H. Quantum Hall effect
of interacting electrons in a periodic potential. Phys. Rev.
B 56, R7100–R7103 (1997).

15 Ghazaryan, A., Chakraborty, T. & Pietilainen, P. Frac-
tional Quantum Hall Effect in Hofstadter Butterflies of
Dirac Fermions. arXiv:1408.3424v1 (2014).
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