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Abstract—The fundamental tradeoff between the rates at
which energy and reliable information can be transmitted over
a single noisy line is studied. Engineering inspiration for this
problem is provided by powerline communication, RFID systems,
and covert packet timing systems as well as communication
systems that scavenge received energy. A capacity-energy function
is defined and a coding theorem is given. The capacity-energy
function is a non-increasing concave ∩ function. Capacity-energy
functions for several channels are computed.

I. INTRODUCTION
The problem of communication is usually cast as one of

transmitting a message generated at one point to another
point. During the pre-history of information theory, a primary
accomplishment was the abstraction of the message to be
communicated from the communication medium. As noted,
“electricity in the wires became merely a carrier of messages,
not a source of power, and hence opened the door to new ways
of thinking about communications” [1]. This understanding
of signals independently from their physical embodiments led
to modern communication theory, but it also blocked other
possible directions. As Norbert Wiener said, “Information is
information, not matter or energy. No materialism which does
not admit this can survive at the present day” [2, p. 132]. This
separation of messages and media arguably led to the division
of electrical engineering into two distinct subfields, electric
power engineering and communication engineering.
Some have argued that the greatest inventions of civilization

either transform, store, and transmit energy or they transform,
store, and transmit information [3]. Although quite reasonable,
many engineering systems actually deal with both energy and
information. Representation of signals requires the modulation
of energy, matter, or some such thing. The separation of
messages and media is not always warranted.
Are there scenarios where one would want to transmit

energy and information simultaneously over a single line? If
there is a power-limited receiver that can harvest received
energy, then one should want both things. The earliest tele-
graphs, telephones, and crystal radios had no external power
sources [1], providing historical examples of such systems.
Modern communication systems that operate under severe
energy constraints may also benefit from harvesting received
energy [4]. A powerful base station or other special node
[5], [6], may effectively be used to recharge mobile devices.
In RFID systems, the energy provided through the forward
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channel is used to transmit over the backward channel [7].
There are also extant mudpulse telemetry systems in the oil
industry where energy and information are provisioned to
remote instruments over a single line [J. Kusuma, personal
communication]. For a truly space-age application, one might
consider furnishing photons to spacecraft with space sails [8]
and optical receivers for both information and propulsion.
Back on earth, power line communication has received

significant attention [9], [10], but the literature has focused on
the informational aspect under the constraint that modulation
schemes not severely degrade power delivery. This need not
be the case in future engineering systems.
Except for papers on reversible computing [11], the fact

that matter/energy must go along with information does not
seem to have been considered in information theory. Sim-
ilarly, the information carried in power transmission seems
not to have been considered in power engineering. Though
not implemented in current systems, a receiver constructed
from reversible gates would allow received energy to perform
additional work and would need not be dissipated as heat [11].
Electricity, of course, is not the only commodity in which

signals can be modulated. Information can be physically
manifested in almost any substance. Examples include water,
railroad cars, and packets in communication networks (whose
timing is modulated [12]); the results presented apply equally
to these scenarios.
This work deals with the fundamental tradeoff between

transmitting energy and transmitting information over a single
noisy line. Although this tradeoff must be known to other
researchers, it does not seem to appear in the literature. A char-
acterization of communication systems that simultaneously
meet two goals:
1) large received energy per unit time, and
2) large information per unit time

is found. Notice that unlike traditional transmitter power
constraints, where small transmitted power is desired, here
large received power is desired. One previous study has looked
at maximum received power constraints [13].

II. CAPACITY-ENERGY FUNCTION
In order to achieve the first goal, one would want the most

energetic symbol received all the time, whereas to achieve
the second goal, one would want to use the unconstrained
capacity-achieving input distribution. This intuition is formal-
ized for discrete memoryless channels, following [14].
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A discrete memoryless channel (DMC) is characterized by
the input alphabet X , the output alphabet Y , and the transition
probability assignment QY |X(y|x). Furthermore, each output
letter y ∈ Y has an energy b(y), a nonnegative real number.
Channel inputs are described by random variables Xn

1 =
(X1, X2, . . . , Xn) with distribution pXn

1
(xn

1 ); the correspond-
ing outputs are random variables Y n

1 = (Y1, Y2, . . . , Yn) with
distribution pY n

1
(yn

1 ). The average received energy is

E [b(Y n
1 )] =

∑
yn
1 ∈Yn

b(yn
1 )p(yn

1 ).

An optimization problem that precisely captures the tradeoff
between the two goals is as follows. Maximize information
rate under a minimum received power constraint. For each
n, the nth capacity-energy function Cn(B) of the channel is
defined as

Cn(B) = max
Xn

1 :E[b(Y n
1 )]≥nB

I(Xn
1 ; Y n

1 ).

An input vector Xn
1 is a test source; one that satisfies

E [b(Y n
1 )] ≥ nB is B-admissible. The maximization is over

all n-dimensional B-admissible test sources. The set of B-
admissible p(xn

1 ) is a closed subset of R
|X |n and is bounded

since
∑

p(xn
1 ) = 1. Since the set is closed and bounded,

it is compact. Mutual information is a continuous function
of the input distribution and since continuous, real-valued
functions defined on compact subsets of metric spaces achieve
their supremums (see Theorem 5), defining the optimization
as a maximum is not problematic. The nth capacity-energy
functions are only defined for 0 ≤ B ≤ Bmax, where Bmax

is the maximum element of bT Q; b is a column vector of the
b(y) and Q is QY |X .
The capacity-energy function of the channel is defined as

C(B) = sup
n

1
n

Cn(B). (1)

A coding theorem can be proven that endows this informa-
tional definition with operational significance.
A code is a pair of mappings (f, g) where f maps a message

alphabet M to X and g maps Y to M. The rate of an n-
length block code is 1

n log |M|. An n-length block code with
maximum probability of error bounded by ε is an (n, ε)-code.
Definition 1: Given 0 ≤ ε < 1, a non-negative number R

is an ε-achievable rate for the channel QY |X with constraint
(b, B) if for every δ > 0 and every sufficiently large n there
exist (n, ε)-codes of rate exceeding R− δ for which b(yn

1 ) <
B implies g(yn

1 ) /∈ M. R is an achievable rate if it is ε-
achievable for all 0 < ε < 1. The supremum of achievable
rates is called the capacity of the channel under constraint
(b, B) and is denoted CO(B).
Theorem 1: CO(B) = C(B).
Proof: Follows by reversing the output constraint inequal-

ity in the solution to [15, P20 on p. 117]. See also [13].

III. PROPERTIES OF THE CAPACITY-ENERGY FUNCTION
The coding theorem provides operational significance to the

capacity-energy function. Some properties of this function may
also be developed.
It is immediate that Cn(B) is non-increasing, since the fea-

sible set in the optimization becomes smaller as B increases.
The function is also concave ∩.
Theorem 2: Cn(B) is a concave ∩ function of B for 0 ≤

B ≤ Bmax.
Proof: Let α1, α2 ≥ 0 with α1 + α2 = 1. The inequality

to be proven is that that for B1, B2 ≤ Bmax,

Cn(α1B1 + α2B2) ≥ α1Cn(B1) + α2Cn(B2).

Let X1 and X2 be n-dimensional test sources distributed
according to p1(xn

1 ) and p2(xn
1 ) that achieve Cn(B1) and

Cn(B2) respectively. Denote the corresponding channel out-
puts as Y1 and Y2. It follows that E[b(Yi)] ≥ nBi and
I(Xi; Yi) = Cn(Bi) for i = 1, 2. Define another source X
distributed according to p(xn

1 ) = α1p1(xn
1 ) + α2p2(xn

1 ) with
corresponding output Y . Then

E[b(Y )] = bT Qp = bT Q[α1p1 + α2p2] (2)
= α1b

T Qp1 + α2b
T Qp2

= α1E[b(Y1)] + α2E[b(Y2)]
≥ n(α1B1 + α2B2),

where b and Q have been suitably extended. Thus, X is
(α1B1 + α2B2)-admissible. Now, by definition of Cn(·),
I(X; Y ) ≤ Cn(α1B1 + α2B2). However, since I(X; Y ) is
a concave ∩ function of the input probability,

I(X; Y ) ≥ α1I(X1; Y1) + α2I(X2; Y2)
= α1Cn(B1) + α2Cn(B2).

Linking the two inequalities yields the desired result:

Cn(α1B1 + α2B2) ≥ I(X; Y ) ≥ α1Cn(B1) + α2Cn(B2).

It can also be shown that C1(B) = C(B).
Theorem 3: For any DMC, Cn(B) = nC1(B) for all n =

1, 2, . . . and 0 ≤ nB ≤ nBmax.
Proof: Let X = (X1, . . . , Xn) be a B-admissible test

source with corresponding output Y that achieves Cn(B), so
E[b(Y )] ≥ nB and I(X; Y ) = Cn(B). Since the channel is
memoryless, I(X; Y ) ≤∑n

i=1 I(Xi; Yi). Let Bi = E[b(Yi)],
then

∑n
i=1 Bi =

∑n
i=1 E[b(Yi)] = E[b(Y )] ≥ nB. By the

definition of C1(Bi), I(Xi; Yi) ≤ C1(Bi). Now since C1(B)
is a concave ∩ function of B, by Jensen’s inequality,

1
n

n∑
i=1

C1(Bi) ≤ C1

(
1
n

n∑
i=1

Bi

)
= C1

(
1
n

E[b(Y )]
)
.

But since 1
nE[b(Y )] ≥ B and C1(B) is a non-increasing

function of B,

1
n

n∑
i=1

C1(Bi) ≤ C1

(
1
n

E[b(Y )]
)
≤ C1(B),
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that is,
n∑

i=1

C1(Bi) ≤ nC1(B).

Combining yields Cn(B) ≤ nC1(B).
For the reverse, letX be a random variable with correspond-

ing output Y that achieves C1(B). That is, E[b(Y )] ≥ B
and I(X; Y ) = C1(B). Now let X1, X2, . . . , Xn be i.i.d.
according to p(X) with outputs Y1, . . . , Yn. Then

E[b(Y n
1 )] =

n∑
i=1

E[b(Yi)] ≥ nB.

Moreover by memorylessness,

I(Xn
1 ; Y n

1 ) =
n∑

i=1

I(Xi; Yi) = nC1(B).

Thus, Cn(B) ≥ nC1(B). Since Cn(B) ≥ nC1(B) and
Cn(B) ≤ nC1(B), Cn(B) = nC1(B).
The theorem implies that single-letterization is valid: C(B) =
C1(B).

IV. THREE BINARY CHANNELS
Closed form expressions of the capacity-energy function

for some particular channels may provide insight. Here, three
binary channels with output alphabet energy function b(0) = 0
and b(1) = 1 are considered. Such an energy function
corresponds to discrete particles and packets, among other
commodities.
Consider a noiseless binary channel. The optimization prob-

lem is solved by the maximum entropy method, hence the
capacity-achieving input distribution is in Gibbsian form. It is
easy to show that the capacity-energy function is

C(B) =

{
log(2), 0 ≤ B ≤ 1

2

h2(B), 1
2 ≤ B ≤ 1,

where h2(·) is the binary entropy function. The capacity-
energy functions for other discrete noiseless channels are
similarly easy to work out using maximum entropy methods.
Consider a binary symmetric channel with crossover prob-

ability ω. It can be shown that the capacity-energy function
is

C(B) =

{
log(2)− h2(ω), 0 ≤ B ≤ 1

2

h2(B)− h2(ω), 1
2 ≤ B ≤ 1− ω.

Recall that for the unconstrained problem, equiprobable inputs
are capacity-achieving, which yield output power 1

2 . For B >
1
2 , the distribution must be perturbed so that the symbol 1 is
transmitted more frequently. The maximum power receivable
through this channel is 1− ω, when 1 is always transmitted.
A third worked example is the Z-channel; the unconstrained

capacity expression and associated capacity-achieving input
distribution [16] are used. Consider a Z-channel with 1 to 0
crossover probability ω. The capacity-energy function is

C(B) =

⎧⎨
⎩log

(
1− ω

1
1−ω + ω

ω
1−ω

)
, 0 ≤ B ≤ (1− ω)π∗

h2(B)− B
1−ω h2(ω), (1− ω)π∗ ≤ B ≤ 1− ω,

where

π∗ =
ω

ω
1−ω

1 + (1− ω)ω
ω

1−ω

.

A Z-channel models quantal synaptic failure [17] and other
“stochastic leaky pipes” where the commodity may be lost en
route.

V. A GAUSSIAN CHANNEL
Attention now turns to discrete-time, continuous-alphabet,

memoryless channels. The coding theorem (Theorem 1) can
be extended in the usual way [18]. Continuous additive noise
systems have the interesting property that for the goal of
received power, noise power is actually helpful, whereas for
the goal of information, noise power is hurtful. In discrete
channels, such an interpretation is not obvious. When working
with real-valued alphabets, some sort of transmitter constraint
must be imposed so as to disallow arbitrarily powerful signals.
Hard amplitude constraints that model rail limitations in power
circuits are suitable. Assume that the channel transition pdf
Q(y|x) exists.
Rather than working with the output energy constraint

directly, it is convenient to think of the output energy function
b(y) as inducing costs on the input alphabet X :

ρ(x) =
∫

Q(y|x)b(y)dy.

By construction, this cost function preserves the constraint:

E[ρ(X)] =
∫

ρ(x)dF (x) =
∫

dF (x)
∫

Q(y|x)b(y)dy

=
∫ ∫

Q(y|x)b(y)dF (x)dy = E[b(Y )],

where F (x) is the input distribution function. Basically, ρ(x)
is the expected output energy provided by input letter x.
Consider the AWGN channel N (0, σ2

N ) and b(y) = y2. Then

ρ(x) =
∫ ∞

−∞

y2

σN

√
2π

exp
{
− (y−x)2

2σ2
N

}
dy = x2 + σ2

N ,

that is, the output power is just the sum of the input power
and the noise power.
Since Theorem 3 extends directly to continuous alphabet

channels,
C(B) = sup

X:E[ρ(X)]≥B

I(X; Y ). (3)

Consider the AWGN channel, N (0, σ2
N ), with input alpha-

bet X = [−A,A] ⊂ R, and energy function b(y) = y2.
Denote the capacity-energy function as C(B; A). Following
lockstep with Smith [19], [20], it is shown that the capacity-
energy achieving input distribution consists of a finite number
of mass points. Before proceeding, two optimization theorems
are quoted [20]:
Theorem 4: Let Ω be a convex metric space, and f and

g concave ∩ functionals on Ω to R; assume there exists an
x1 ∈ Ω such that g(x1) < 0 and let

D′ � sup
x∈Ω:g(x)≤0

f(x).
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If D′ is finite, then there exists a constant λ ≥ 0 such that

D′ = sup
x∈Ω

[f(x)− λg(x)].

Moreover if the supremum in the first equation is achieved by
x0 and g(x0) ≤ 0, then the supremum is achieved by x0 in
the second equation and λg(x0) = 0.
Theorem 5: Let f be a continuous, weakly-differentiable,

strictly concave ∩ map from a compact, convex, topological
space Ω to R. Define

D � sup
x∈Ω

f(x).

Then the following two properties hold:
1) D = max f(x) = f(x0) for some unique x0 ∈ Ω, and
2) A necessary and sufficient condition for f(x0) = D is
for f ′

x0
(x) ≤ 0 for all x ∈ Ω, where f ′

x0
is the weak

derivative.
Let FA be the space of input probability distribution

functions having all points of increase on the finite interval
[−A,A].
Lemma 1 ( [19]): FA is convex and compact in the Levy

metric.
Since the channel is fixed, mutual information can be written
as a function of the input distribution, I(F ).
Lemma 2 ( [19]): Mutual information I : FA → R is a

concave ∩, continuous, weakly differentiable functional.
Let us denote the input squared value under input distribu-

tion F as

σ2
F �

∫ A

−A

x2dF (x).

Recall the energy constraint

B ≤ E[ρ(X)] = E[x2 + σ2
N ] = σ2

N + σ2
F ,

which is equivalent to B − σ2
N − σ2

F ≤ 0. Now define the
functional J : FA → R as

J(F ) � B − σ2
N −

∫ A

−A

x2dF (x).

Lemma 3: J is a concave ∩, continuous, weakly differen-
tiable functional.

Proof: Clearly J is linear in F (see (2) for basic argu-
ment). Moreover, J is bounded as B−σ2

N−A2 ≤ J ≤ B−σ2
N .

Since J is linear and bounded, it is concave ∩, continuous,
and weakly differentiable.
Returning to the optimization problem to be solved,
Theorem 6: There exists a constant λ ≥ 0 such that

C(B; A) = sup
F∈FA

[I(F )− λJ(F )].

Proof: The result follows from Theorem 4 since I is a
concave ∩ functional (Lemma 2), J is a concave ∩ functional
(Lemma 3), since capacity is finite whenever A < ∞ and
σ2

N > 0, and since there is obviously an F1 ∈ FA such that
J(F1) < 0.

Theorem 7: There exists a unique capacity-energy achiev-
ing input X0 with distribution function F0 such that

C(B; A) = max
F∈FA

[I(F )− λJ(F )] = I(F0)− λJ(F0).

Moreover, a necessary and sufficient condition for F0 to
achieve capacity-energy is

I ′F0
(F )− λJ ′

F0
(F ) ≤ 0 for all F ∈ FA. (4)

Proof: Since I and J are both concave ∩, continuous,
and weakly differentiable (Lemmas 2, 3), so is I − λJ . Since
FA is a convex, compact space (Lemma 1), Theorem 5 applies
and yields the result.
For our function I − λJ , the optimality condition (4) is,∫ A

−A

[i(x; F0) + λx2]dF (x) ≤ I(F0) + λ

∫
x2dF0(x),

for all F ∈ FA, where i is

i(x; F ) =
∫

Q(y|x) log
Q(y|x)
p(y; F )

dy

and is variously known as the marginal information density
[20], the Bayesian surprise [21], or without name [22, Eq. 1].
This follows since the mutual information weak derivative is

I ′F1
(F2) =

∫ A

−A

i(x; F1)dF2(x)− I(F1)

and the energy weak derivative is J ′
F1

(F2) = J(F2)− J(F1).
If
∫

x2dF0(x) > B−σ2
N , then the moment constraint is trivial

and the constant λ is zero, thus the optimality condition can
be written as∫ A

−A

[i(x; F0) + λx2]dF (x) ≤ I(F0) + λ[B − σ2
N ]. (5)

The optimality conditions (5) may be rejiggered to a con-
dition on the input alphabet.
Theorem 8: Let F0 be an arbitrary distribution function in

FA satisfying the energy constraint. Let E0 denote the points
of increase of F0 on [−A,A]. Then F0 is optimal if and only
if, for some λ ≥ 0,

i(x; F0) ≤ I(F0) + λ[B − σ2
N − x2] for all x ∈ [−A,A],

i(x; F0) = I(F0) + λ[B − σ2
N − x2] for all x ∈ E0.

Proof: If both conditions hold for some λ ≥ 0, F0 must
be optimal and λ is the one from Theorem 7. This is because
integrating both sides of the conditions by an arbitrary F yield
satisfaction of condition (4).
For the converse, assume that F0 is optimal but that the

inequality condition is not satisfied. Then there is some x1 ∈
[−A,A] and some λ ≥ 0 such that i(x1; F0) > I(F0)+λ[B−
σ2

N − x2
1]. Let F1(x) be the unit step 1(x − x1) ∈ FA; but

then ∫ A

−A

[i(x; F0) + λx2]dF1(x) = i(x1; F0) + λx2
1

> I(F0) + λ[B − σ2
N ].
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This violates (5), thus the inequality condition must be valid
with λ from Theorem 7.
Now assume that F0 is optimal but that the equality con-

dition is not satisfied, i.e. there is set E′ ⊂ E0 such that the
following is true.∫

E′

dF0(x) = δ > 0 and
∫

E0−E′

dF0(x) = 1− δ,

i(x; F0) + λx2 < I(F0) + λ[B − σ2
N ] for all x ∈ E′,

i(x; F0) + λx2 = I(F0) + λ[B − σ2
N ] for all x ∈ E0 − E′.

Then,

0 =
∫

[i(x; F0) + λx2]dF0(x)− I(F0)− λ[B − σ2
N ]

=
∫
E0

[i(x; F0) + λx2]dF0(x)− I(F0)− λ[B − σ2
N ]

< δ[I(F0) + λ(B − σ2
N )] + (1− δ)[I(F0) + λ(B − σ2

N )]

− I(F0)− λ[B − σ2
N ] = 0,

a contradiction. Thus the equality condition must be valid.
At a point like this, one might try to develop measure-

matching conditions like Gastpar et al. [22] for undetermined
b(·), but this path is not pursued here. To show that the input
distribution is supported on a finite number of mass points
requires Smith’s reductio ab absurdum argument (see [23] for
a slight correction).
Theorem 9: E0 is a finite set of points.

The proof uses optimality conditions from Theorem 8 to derive
a contradiction using the analytic extension property of the
marginal entropy density h(x; F ),

h(x; F ) = −
∫

Q(y|x) log p(y; F )dy.

Since the capacity-energy achieving input distribution is a
pmf, a finite numerical optimization algorithm may be used
[24]. Consider the AWGN channel N (0, 1) and find the point
C(B = 0; A = 1.5). The capacity achieving input density is
p(x) = 1

2δ(x + 1.5) + 1
2δ(x− 1.5). The achieved rate is

C(0; 1.5) =
∫ +1

−1

2/3√
2π(1−y2)

e−
(1−(4/9) tanh−1(y))2

8/9 log(1+y)dy.

The achieved output power is E[Y 2] = 3.25. In fact, this is
the maximum output power possible over this channel, since
E[Y 2] = E[X2] + σ2

N , and E[X2] cannot be improved over
operating at the edges {−A,A}. Thus,

C(B; 1.5) = C(0; 1.5), 0 ≤ B ≤ Bmax = 3.25.

For this particular channel, there actually is no tradeoff be-
tween information and power: antipodal signaling should be
used all the time. This is not a general phenomenon, however.
This is not true for the same noise, but for say A ≥ 1.7 rather
than A = 1.5 [19].

VI. CONCLUSION
Information is patterned matter-energy. In this work, the

fundamental tradeoff between the rate of transporting a com-
modity between one point and another and the rate of simulta-
neously transmitting information by modulating in that com-
modity has been studied. As extensions, one might consider a
“wideband regime” formulation [25], a multiterminal problem
where different users have different energy and information
requirements, or a deeper look into reversible decoding [11].
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