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Abstract Molecular communication provides commu-

nication and networking capabilities for nanomachines

such as biosensors and bio-actuators to form and enable

Body Area NanoNetworks (BANNs). This paper con-

siders neuron-based molecular communication, which

utilizes natural neurons as a primary component to

build BANNs, and proposes an end-to-end software ar-

chitecture to manage and control neuron-based BANNs

through a series of software services. Those services aid

to realize end user applications in healthcare, such as

biomedical and rehabilitation applications. In the pro-

posed architecture, a neuron-based BANN consists of a
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set of nanomachines and a network of neurons that are

artificially formed into a particular topology. This pa-

per investigates two mechanisms in the proposed archi-

tecture: (1) an artificial assembly method to form neu-

rons into specific three-dimensional topology patterns

and (2) a communication protocol for neuronal signal-

ing based on Time Division Multiple Access (TDMA),

called Neuronal TDMA. The assembly method uses sil-

ica beads as growth surface and bead-bead contacts

as geometrical constraints on neuronal connectivity. A

web lab experiment verifies this method with neuronal

hippocampal cells. Neuronal TDMA leverages an evolu-

tionary multiobjective optimization algorithm (EMOA)

to optimize the signaling schedules for nanomachines.

Simulation results demonstrate that the Neuronal TDMA

efficiently obtains quality solutions.

Keywords Intrabody Nanonetworks · Molecular

Communication · Neuronal signaling · Services ·
Evolutionary multiobjective optimization algorithms

1 Introduction

Nanoscale communication is a new research paradigm

that aims to provide communication and networking ca-

pabilities between nanoscale devices (or nanomachines

in short) such as biosensors and bio-actuators. Nanoma-

chines are the most basic functional unit in nanoscale

systems, and they perform very simple computation,

sensing and/or actuation tasks [19].

One of a few nanoscale communication schemes is

molecular communication, which is inspired by the com-

munication mechanisms that occur among living cells.

This bio-inspired communication scheme utilizes molecules

as a communication medium [14]. Due to its proper-

ties such as inherent nanometer scale, biocompatibil-
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ity and energy efficiency, a key application domain of

molecular communication is Body Area NanoNetworks

(BANNs) where nanomachines are networked to per-

form their tasks in the human body for biomedical and

prosthetic purposes [1,4,14]. Those tasks include phys-

iological sensing, biomedical anomaly detection, neural

signal transduction and neuromuscular implant control.

This paper considers neuron-based molecular com-

munication, which utilizes neurons as a primary com-

ponent to build BANNs, and proposes an end-to-end

software architecture to manage and control neuron-

based BANNs through a series of software services.

Those services may reside in clouds as well as the user’s

mobile devices (e.g., smartphones, tablets and laptops)

and implantable devices/interfaces in order to connect

low-level BANNs and higher-level end user applications

such as biomedical and rehabilitation applications.

In the proposed architecture, a neuron-based BANN

consists of a set of nanomachines and a network of neu-

rons that are artificially formed into a particular topol-

ogy. It allows nanomachines to interface (i.e., activate

and deactivate) neurons in a non-invasive manner and

communicate to other nanomachines through a chain of

neurons with electrochemical signals. This paper inves-

tigates two mechanisms in the proposed architecture:

(1) an artificial assembly method to form neurons into

specific three-dimensional topology patterns and (2) a

communication protocol for neuronal signaling based

on Time Division Multiple Access (TDMA), called Neu-

ronal TDMA. The assembly method uses silica beads as

growth surface and bead-bead contacts as geometrical

constraints on neuronal connectivity. A web lab exper-

iment verifies this method with neuronal hippocampal

cells and demonstrates it is feasible to realize commu-

nication substrates for neuron-based BANNs.

Neuronal TDMA performs a single-bit TDMA schedul-

ing for nanomachines in neuron-based BANNs. It allows

nanomachines to multiplex and parallelize neuronal sig-

nal transmissions while avoiding signal interference to

ensure that signals reach the destination. It makes deci-

sions of signaling schedules (i.e., when to activate neu-

rons to trigger signal transmissions) for nanomachines

with an evolutionary multiobjective optimization algo-

rithm (EMOA) that evolves a set of solution candidates

(or individuals). Each individual represents a particu-

lar TDMA schedule for nanomachines with respect to

time. Neuronal TDMA considers conflicting optimiza-

tion objectives such as signaling yield, signaling fair-

ness among nanomachines and signaling delay. For ex-

ample, improving signaling yield can degrade signaling

fairness. On the contrary, improving signaling delay can

degrade signaling yield.

Nucleus'

Soma'

Dendrites'

Axon'

Axon'terminal'

Fig. 1 The structure of neurons

Since there exists no single optimal solution (TDMA

schedule) under conflicting objectives but rather a set

of alternative solutions of equivalent quality, Neuronal

TDMA is designed to seek the optimal trade-offs among

the objectives by searching Pareto-optimal solutions

that are equally distributed in the objective space. There-

fore, it can produce both extreme TDMA schedules

(e.g., the one yielding high signaling rate and low signal-

ing fairness) and balanced schedules (e.g., the one yield-

ing intermediate signaling delay and intermediate sig-

naling rate) at the same time. Given a set of heuristically-

approximated Pareto-optimal TDMA schedules, Neu-

ronal TDMA allows BANN operators, software services

and/or end users to examine the trade-offs among them

and make a well-informed decision to choose one of

them as the best TDMA schedule.

Simulation results show that Neuronal TDMA effi-

ciently obtains quality solutions with acceptable com-

putational costs and allows nanomachines to perform

signal transmissions while avoiding signal interference.

It outperforms several well-known existing EMOAs.

2 Background: Neurons and Neuronal Signaling

Neurons are a fundamental component of the nervous

system, which includes the brain and the spinal cord.

They are electrically excitable cells that process and

transmit information via electrochemical signaling.

A neuron consists of cell body (soma), dendrites and

axon (Fig. 1). The diameter of a soma varies from 4

to 100 micrometers. Dendrites are thin structures that

arise from the soma. The length of a dendrite is up

to a few hundred micrometers. An axon is a cellular

extension that arises from the soma. It travels through

the body in bundles called nerves. Its length can be

over one meter in the human nerve that arises from the

spinal cord to a toe.

Neurons are connected with each other via synapses,

each of which is a junction between two neurons. A

synapse contains molecular machinery that allows a

(presynaptic) neuron to transmit a chemical signal to

another (postsynaptic) neuron. Signals are transmitted

from the axon of a presynaptic neuron to a dendrite of
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Fig. 2 Intercellular Ca2+ concentration in a neuron. Ca2+

releases must be separated by at least the refractory time Tr.

a postesynaptic neuron. An axon transmits an output

signal to a postsynaptic neuron, and a dendrite receives

an input signal from a presynaptic neuron.

Presynaptic and postsynaptic neurons maintain volt-

age gradients across their membranes by means of voltage-

gated ion channels, which are embedded in the presy-

naptic membrane to unbalance intracellular and extra-

cellular concentration of ions (e.g., Ca2+) [18]. Changes

in the cross-membrane ion concentration (i.e., voltage)

can alter the function of ion channels. If the concen-

tration changes by a large enough amount (e.g., ap-

proximately 80 mV in a giant squid), ion channels start

pumping extracellular ions inward. Upon the increase

in intracellular ion concentration, the presynaptic neu-

ron releases a chemical called a neurotransmitter (e.g.,

acetylcholine), which travels through the synapse from

the presynaptic postsynaptic neuron. The neurotrans-

mitter electrically excites the postsynaptic neuron, which

in turn generates an electrical pulse called an action

potential. This signal travels rapidly along the neuron’s

axon and activates synaptic connections (i.e., opens ion

channels) when it arrives at the axon’s terminals. This

way, an action potential triggers cascading neuron-to-

neuron communication.

Fig. 2 shows how Ca2+ concentration changes in a

neuron. When the concentration peaks, the neuron re-

leases neurotransmitters and goes into a refractory pe-

riod (Tr), in which the neuron replenishes its internal

Ca2+ store. During Tr, it cannot receive and process in-

coming signals. The refractory period is approximately

two milliseconds in a giant squid.

3 Related Work

Several types of solutions have been investigated for

molecular communication, such as calcium signaling [15],

bacteria communication [10] and molecular motors [13].

Most of these solutions are applicable to short-range

communication (nanometers to millimeters), which of-

Sensor'

Neuron' S' Sink'node'

Signaling'
flow'

Fig. 3 An Example Neuron-based BANN

ten mimics wireless communication paradigms [5]. In

contrast, this paper studies a long-range communica-

tion (millimeters to meters) that leverages wired neu-

ronal networks. Neuron-based communication has such

advantages as long distance coverage, high speed signal-

ing (up to 90 m/s) and low attenuation in signaling [5].

Balasubramaniam et al. first examined TDMA com-

munication for neuronal signaling [2]. This paper ex-

tends it with a multiobjective optimization algorithm

that considers communication performance objectives

such as signaling yield, fairness and latency. This pa-

per also examines an artificial assembly method to form

neurons into specific topology patterns.

Tezcan et al. address communication robustness in

TDMA-based neuronal signaling by proposing a signal

buffering mechanism with neural delay lines, which par-

allel fiber delay lines in optical network switching [20].

This paper is similar to their work in that both assume

TDMA communication. However, this paper focuses on

optimization in TDMA scheduling while Tezcan et al.

do not consider TDMA scheduling.

4 A Service-Oriented Architecture for

Neuron-based Body Area NanoNetworks

This section provides an overview of the proposed service-

oriented architecture for neuron-based BANNs, in par-

ticular focusing on the use of artificial neuronal net-

works as physical molecular communication media.

The proposed architecture assumes neuronal signal-

ing in a three-dimensional network of neurons that are

artificially grown and formed into particular topology

patterns. (This type of neuronal networks are often re-

ferred to as artificial neuronal networks in the rest of

this paper.) In particular, the architecture assumes low-

density neuronal networks [9].

Fig. 3 illustrates a schematic neuron-based BANN.

It contains an artificial neuronal network and several

nanomachines such as sensors and a sink. Sensors uti-

lize neuronal signaling to deliver sensor data to the

sink. As a potential application, sensors may period-

ically monitor certain physiological status and report
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physiological data or biomedical anomalies to the sink.

This paper assumes that nanomachines (e.g., sensors)

interact with neuronal networks in a non-invasive man-

ner. This means that it is not required to insert partic-

ular materials (e.g., carbon nanotubes) into neurons so

that nanomachines can trigger and receive signals. For

example, nanomachines may use chemical agents (e.g.,

acetylcholine and mecamylamine [2]) or light [7].

Control'
signal'

Actuators'

Subdermal/epidermal'
interface'

Neurocontrol*BANN*
App' ……'

Cloud'

Service'API'
Service' Service' Service'

App'

…'

Service'API'
Service' Service'

Sensory'
signal'

Sink'

Sensors'

Mobile'
device'

…'

Neurosensory*BANN*

Sensory'signal'
Sensors'

Control'signal' Actuators'

Neurotransduc1on*BANN*

Fig. 4 An Overview of the Proposed Service-Oriented Archi-
tecture

The proposed architecture supports three types of

neuron-based BANNs: (1) neurosensory BANNs, (2)

neurocontrol BANNs and (3) Neurotransduction BANNs

(Fig. 4). A neurosensory BANN has sensor nanoma-

chines transmit sensory data to the sink nanomachine.

(See Fig. 3 as an example of this BANN.) Example sen-

sors include electrodes that are interfaced to a nerve for

collecting and intercepting neuronal signals as well as

biosensors to monitor physiological parameters and de-

tect biomedical anomalies. The sink serves as a subder-

mal or epidermal interface that connect a neuron-based

BANN with external devices by converting incoming

electrochemical signals to electrostatic or electromag-

netic signals. If electrostatic signals are used, they re-

alize a body-coupled communication scheme [16,21] for

carrying sensory data to an epidermal device(s) such as

a smartphone that the user holds and a device that is

embedded in the floor the user stands on. If electromag-

netic signals are used, they realize radio frequency com-

munications to carry sensory data to an around-body

mobile device(s) such as a smartphone and tablet.

A neurocontrol BANN has a subdermal/epidermal

interface node receive control signals from on/around-

body mobile devices and fire its neighboring neuron to

transmit the control signals to actuator nanomachines

(Fig. 4). Example actuators include bio-actuators that

Service'API'
Electrosta*c/electromagne*c/comm,/

signal/intercep*on/transduc*on/transmission,/
I/F/to/clouds,/I/F/to/on/around7body/sensors,/etc./

Neuronal/
TDMA/

Op*mizer/
……/

Neuronal/
TDMA/

Op*mizer/

Topology/
configura*on/

Error/
detec*on/
correc*on/

Time/
synchroniza*on/

Signal/
transduc*on/

policy/

Prosthe*c/
limb/velocity/

Control/

Services/

Mobile'Device/

Fig. 5 Services and Service API in a Mobile Device

are equipped with pumps to release drug molecules as

well as neurostimulators that are interfaced to a nerve

in order to issue high/low-frequency stimulation to pre-

vent/allow neuronal signaling in the nerve.

A neurotransduction BANN is a hybrid of a neu-

rosensory BANN and a neurocontrol BANN. It has sen-

sor nanomachines transmit sensory signals to a subder-

mal/epidermal interface node, which combines a sink

nanomachine with a control signaling nanomachine (Fig. 4).

The interface node transduces an incoming sensory sig-

nal to a control signal and fires its neighboring neu-

ron to transmit the control signal to actuator nanoma-

chines. The node may communicate with the user’s mo-

bile device.

Potential application of neurotransduction BANNs

are neurointerfaces that leverage in-situ sensing and ac-

tuation for prosthetic devices. For example, a BANN

may be used to connect a nerve arising from the spinal

cord to a prosthetic device [12]. In this BANN, sen-

sors intercept neuronal signals from a nerve and fire

their neighboring neurons to transmits signals to a sub-

dermal/epidermal node through an artificial neuronal

network. The node in turn aggregates incoming signals

and fires its neighboring neuron to transmit a signal

to actuators through another neuronal network. Upon

signal arrivals, the actuators control prosthetic devices

accordingly. A neurotransduction BANN may also be

used for the opposite interface direction: from a pros-

thetic device to neurons arising from the spinal cord [17].

In this BANN, sensors are interfaced to a prosthetic

device and transmit signals to actuators such as neu-

rostimulators through two artificial neuronal networks.

As shown in Fig. 4, the proposed architecture allows

software services to be deployed on the user’s mobile

device and/or cloud computing platforms. Fig. 5 illus-

trates an organization of the service API and services
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Fig. 6 After seven days in culture beads carrying E18 neuronal hippocampal cells were fixed and z-stack series were acquired
with a laser scanning confocal microscope. The images are an XY projection of 100 mm confocal z series. Beads were held
together by the neuronal processes growing over them. To trace all the neuronal processes the sample was stained with neuronal
tubulin antibody (green) and to identify individual connections a small fraction of the neurons were treated to express a red
marker (red).

in the user’s mobile device. The service API provides

foundational common functionalities to enable services

on the mobile to interact with subdermal/epidermal in-

terface nodes, on/around-body sensors and clouds. In-

dividuals services are defined and used to control and

manage neuron-based BANNs. For example, the topol-

ogy configuration service maintains the topology of a

neuronal network. Neuronal TDMA optimizers imple-

ment different EMOAs for TDMA scheduling.

Services are dynamically replaceable and reconfig-

urable. For example, Neuronal TDMA optimizers may

be dynamically replaced to incorporate new TDMA

scheduling requirements. The prosthetic limb velocity

control service may be dynamically reconfigured to ad-

just the movement of a prosthetic limb. When the user

walks in a dry environment, the control service may

move the prosthetic limb at a regular velocity. How-

ever, as the user moves to an slippery (e.g., icy or wet)

area, the service may be alerted and reconfigured to

instruct the prosthetic limb to tread slowly. This alert

may be manually generated by the user using his/her

mobile device or automatically generated from devices

embedded in the physical environment (e.g., the floor).

5 An Assembly of Artificial Neuronal Networks

The proposed neuron-based BANN architecture assumes

three dimensional artificial neuronal networks. An ex-

ample network is presented in Fig. 6. The method used

to establish the topologically-specific neuronal network

is by using 125 µm diameter silica beads as growth sur-

face that are large enough for neuronal cell bodies and

their processes. Monodisperse particles are chosen as

they have the property to spontaneously assemble into

an ordered array of connecting particles. The sites of

bead-bead contact serve of crossing point for neuronal

processes to extend onto neighboring beads, thus pro-

viding a geometrically determined constraint on con-

nectivity. The bead surface was coated with poly-L-

lysine (PLL) to enhance cell adhesion and to support

neuronal maturation 13, 14. Rat hippocampal neurons

harvested at a late embryonic stage (E18) were seeded

on PLL-coated beads following dissection and dissoci-

ation. The beads provided a growth surface for one to

five neurons and allowed us to move them with mini-

mum damaged to their processes. As neurons mature

their processes decorate the particles. In order to trace

processes from different cells, transfection of one bead

culture is performed to express Tandem-Dimer-Tomato

(TdT). After 48 hours in culture one bead culture car-

rying labeled is mixed with one bead culture carrying

unlabeled neurons. To characterize the assemblies, con-

focal microscopy images of 450 µm x 450 µm x 388 µm

subsections of the arrays were acquired. The maximum

intensity Z-projection of xx plane show how processes

decorate the bead surface, and allow us to distinguish

processes and synapses between neurons. The cell trac-

ing process was done manually.

6 Neuronal TDMA

When nanomachines invoke signaling on a neuronal net-

work, they may transmit signals on the same neurons

at the same time. This leads to a large number of inter-

ference (or collisions) in the neuronal network, which

in turn leads to corruption of transmitted information

at the sink nanomachine. As discussed in Section 2 and

Fig. 2, neurons possess the refractory period in which no

signals can be processed and transmitted. Thus, Neu-

ronal TDMA is intended to eliminate signaling inter-

ference through a chain of neurons toward the sink by
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scheduling which sensors activate which neurons with

respect to time.

Neuronal TDMA is a single-bit TDMA communica-

tion protocol that periodically assigns a time slot dedi-

cated to each sensor. Sensors activate neurons, one af-

ter the other, each using its own time slot. This allows

multiple sensors to transmit signals to the sink through

the shared neuronal network without interference. Each

sensor transmits a single signal (a single bit) within a

single time slot.

Fig. 7 shows an example neuron-based BANN that

contains four nanomachines (three sensors and one sink)

and a network of five neurons. Fig. 8 depicts an example

TDMA schedule for those sensors to activate neurons.

The scheduling cycle period lasts 6 time slots (Ts = 6).

The input s1 activates the neuron n4 to initiate signal-

ing in the first time slot T1. The signal travels through

n5 in the next time slot T2 to reach the sink. The in-

put s2 transmits a signal on n3 in T2. During T2, two

signals travel in the neuronal network in parallel. The

duration of each time slot must be equal to, or longer

than, the refractory period Tr (Fig. 2).

S1#

S2#

S3# Sink#

S# Sensor#

n1# n2#

n3#

n4#
n5#

Fig. 7 An Example Neuron-based BANN

T1#

n4# n5#

n3# n2#

n1#
n5#

T2# T3# T4# T1#

n4# n5#

n3#

T2#

n2# n5#

T5# T6# …#

…#

S1#

S2#

S3#

Scheduling#cycle#(Ts)#

Fig. 8 An Example TDMA Schedule

The scheduling problem in Neuronal TDMA is de-

fined as an optimization problem where a neuron-based

IBSAN contains M sensors, S = {s1, s2, ..., si, ..., sM},
and N neurons, N = {n1, n2, ..., nj , ..., nN}. Each sen-

sor transmits at least one signals to the sink during the

scheduling cycle Ts. E
si = {Esi1 , E

si
2 , ...E

si
k , ..., E

si
|Esi |}

denotes the signals that a sensor si transmits to the

sink. |Esi | is the total number of signals that si trans-

mits during the scheduling cycle Ts.

6.1 Optimization Objectives and Constraints

Neuronal TDMA considers three optimization objec-

tives: (1) signaling yield, (2) signaling fairness among

different sensors and (3) signaling delay.

Signaling yield (Y ) is computed as follows. It is to

be maximized.

fY =

M∑
i=1

|Esi | (1)

This objective indicates the total number of signals

that the sink receives from all M sensors during the

scheduling cycle Ts.

The second objective, signaling fairness (F ), is com-

puted as follows. It is to be maximized.

fF =

M∑
l=1

M∑
m=1

|Esl |∑
k=1

1

|tk(sl)d − tk(sm)
d |

, l 6= m (2)

t
k(sl)
d denotes the departure time of the k-th sig-

nal that sl transmits to the sink. This objective en-

courages the sensors to equally access the shared neu-

ronal network for signaling in order to avoid a situation

where a limited number of sensors dominate the net-

work. Higher fairness means that the sensors access the

neuronal network more equally.

The third objective, signaling delay (D), is com-
puted as follows. It is to be minimized.

fD = maxsi∈S t
|Esi |((si)
a (3)

t
|Esi |((si)
a denotes the arrival time at which the sink

receives the last (the |Esi |-th) signal that si transmits.

fD indicates how soon the sink receives all signals from

all M sensors. fD determines the scheduling cycle pe-

riod Ts (Ts = fD).

Neuronal TDMA considers three constraints in its

optimization process. The first constraint enforces that

at most one signal can pass through each neuron in

a single time slot. The second constraint enforces each

sensor to transmit at least one signal to the sinks (|Esi | ≥
1 ∀i = 1, 2, ...,M). The third constraint (CD) is the

upper limit for fD: fD ≤ CD. The delay constraint

violation (gD) is computed as follows where I = 1 if

fD > CD and I = 0 otherwise.

gD = I × (fD − CD) (4)
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6.2 Individual Representation

In Neuronal TDMA, each individual represents a par-

ticular TDMA schedule for M sensors. Fig. 9 shows the

structure of an individual. In this example, the first sen-

sor, s1, activates the first neuron n1 for signaling. The

signal travels through two neurons, n2 and n3, in the

second and third time slots t2 and t3, respectively.

1" 0" 0" 0" 0"

0" 1" 0" 0" 0"

0" 0" 1" 0" 0"

T1" T2" T3" T4" T5"

S1"

S2"

S3"

Fig. 9 Individual Representation

6.3 The Proposed EMOA in Neuronal TDMA

Fig. 10 shows the algorithmic structure of the proposed

EMOA in Neuronal TDMA. In the first generation (t =

0), µ individuals are randomly generated as the initial

generation P 0. This process makes sure that generated

individuals never violate constraints except the delay

constraint CD. In each generation (t), a pair of individ-

uals, called parents (p1 and p2), are chosen from the cur-

rent population P g using the binary tournament oper-

ator (BTounament()) [6]. A binary tournament randomly

takes two individuals from P t, compares them based on

their fitness values, and chooses a superior one (i.e., the

one whose fitness is higher) as a parent.

The notion of fitness is defined with constrained

dominance relationships among individuals. The rela-

tionships rank individuals based on the objective values

and delay constraint violation that they yield. An indi-

vidual i is said to constrained-dominate an individual j

if:

– i does not violate the signaling delay constraint (gD(i) =

0; c.f. Equation 4) but j does (gD(j) > 0),

– both i and j do not violate the delay constraint, and

i dominates j with respect to objectives, or

– both i and j violate the delay constraint, and the

constraint violation of i is less than j’s (gD(i) <

gD(j)).

Given the notion of dominance [3], individual i is

said to dominate individual j (denoted by i � j) with

respect to objectives if:

– fk(i) ≤ fk(j) for all k = 1, 2, ...,m, and

main
t← 0
P0 ← Randomly generated µ0 individuals
repeat

Q0 ← ∅
repeat

p1 ← BTounament(P g)
p2 ← BTounament(P g)
q1c , q

2
c ← Crossover(p1, p2)

q1m ←Mutation(q1c )
q2m ←Mutation(q2c )
if q1m /∈ Qt

then Qt ← Qt ∪ q1m
if q2m /∈ Qt

then Qt ← Qt ∪ q2m
until |Qt| = λt
P t+1 ← DiversityAwareSelection(P t ∪Qt)
λt+1 ← OffspringSizeAdjustment()
t← t+ 1

until t = tmax

Fig. 10 Algorithmic Structure of the Proposed EMOA in
Neuronal TDMA

– fk(i) < fk(j) for at least one k ∈ 1, 2, ...m

fk(i) denotes the objective value that i yields in the

k-th objective. For fY and fF , their inverses are used

here for an individual-to-individual comparison purpose

because the two objectives are to be maximized.

Fitness is calculated for each individual (i) as fol-

lows.

Fitness(i) = µ− di (5)

µ denotes the population size, and di denotes the

number of individuals that constrained-dominate i. Fit-

ness proportionate the superiority of an individual.

After two parents (p1 and p2) are selected, they re-

produce two offspring (q1c and q2c ) with a single-point

crossover operator (Crossover() in Fig. 10). Each off-

spring is mutated with a mutation operator (Mutation()

in Fig. 10) that randomly alters the time slot assign-

ment for each neuronal signal at the mutation rate Pm.

Crossover() and Mutation() make sure that offspring

never violate constraints except the delay constraint

CD.

Once λ offspring are reproduced through parent se-

lection, crossover and mutation, the proposed EMOA

ranks µ+ λ (i.e., |P t ∪Qt|) individuals and selects the

top µ of them as the individuals used in the next gen-

eration (P t+1) with a diversity-aware selection opera-

tor (DiversityAwareSelection() in Fig. 10). This operator

ranks individuals based on their diversity in the objec-

tive space as well as their fitness values. It computes

each individual’s diversity with the notion of crowding

distance [3]. A crowding distance indicates how an indi-

vidual is distant from its nearest neighbors in the objec-

tive space. Thus, an individual with a higher crowding
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distance exists in a less crowded region in the objective

space. The proposed diversity-aware selection operator

plots individuals in a two dimensional space whose axes

represent their fitness and diversity. Then, it determines

the dominance relationships among individuals with re-

spect to the two axes and ranks them from the ones

with higher fitness and diversity to the ones with lower

fitness and diversity. Finally, it selects the top µ individ-

uals as the next generation’s individuals. The proposed

diversity-aware selection operator is designed to main-

tain the diversity of individuals in order to reveal the

trade-offs among conflicting objectives.

At the end of each generation (t), the proposed

EMOA adjusts the number of offspring reproduced in

the next generation (λt+1) (OffspringSizeAdjustment() in

Fig. 10). λt+1 is re-computed on a generation-by-generation

basis in order to adjust the density of individuals in the

objective space as well as the selection pressure of in-

dividuals. In this paper, selection pressure (ψ) is mea-

sured as follows:

ψ =
µ+ λ

µ
(6)

µ denotes the population size. Selection pressure in-

dicates how hard individuals can survive to the next

generation; a higher selection pressure means that indi-

viduals have lower chances to survive to the next gen-

eration. It is known that a low selection pressure sig-

nificantly degrades optimization/convergence speed [6].

The proposed offspring size adjustment operator is de-

signed to maintain a reasonably high selection pressure

by adjusting λ in Equation 6.

The density of individuals in the objective space (η)

is measured as follows:

η =
µ+ λ

γ
(7)

γ denotes the total volume of the objective space.

In a higher-dimensional objective space, it is harder

to determine dominance relationships among individu-

als because individuals have higher chances to be non-

dominated with each other [8]. This often leads to pre-

mature convergence, which fails to improve the quality

of individuals. The proposed offspring size adjustment

operator is designed to alleviate this problem by in-

creasing λ in Equation 7 and in turn maintaining the

density of individuals in the objective space.

The size of offspring is adjusted based on those in

the current (the t-th) and previous (the (t− 1)-th):

λt+1 = λt +

(
λ′t−1
λt−1

− λ′t
λt

)
λt (8)

λ′t denotes the number of offspring that survive to

the next generation through the selection process in

DiversityAwareSelection() (Fig. 10). Thus,
λ′t
λt

indicates

the survival ratio of offspring. If is is lower than the

survival ratio at the previous generation (
λ′t−1

λt−1
), the pro-

posed operator considers that convergence/evolution does

not proceed well due to a lack of enough selection pres-

sure and/or individual density in the objective space.

Therefore, the operator increases the number of off-

spring reproduced in the next generation (λt+1). Con-

versely, if
λ′t
λt
>

λ′t−1

λt−1
, the operator decreases λt+1.

7 Simulation Evaluation

This section evaluates the proposed EMOA in Neuronal

TDMA through simulations.

7.1 Simulation Configurations

This paper simulates a neuronal network that contains

43 neurons (Fig. 11). 11 sensors are evenly distributed

in the network. Although a number of studies have in-

vestigated the topology shapes of neuronal networks,

Diffusion Limited Aggregation (DLA) is a common method

to represent and generate their tree topology shapes [11].

This paper uses a similar random tree-like topology that

mimics a dendritic tree among neurons [11] (Fig. 11).

Sink%

Fig. 11 A Simulated Neuronal Network

The proposed EMOA is configured with a set of

parameters shown in Table 1. It is compared with two

well-known existing EMOAs: NSGA-II [3] and SPEA2 [22].

Each experimental result is obtained from 20 indepen-

dent experiments.

Table 1 EMOA Configurations

Parameter Value

The initial population size (µ0 in Fig. 10) 100
The initial offspring size λ0 (µ0 in Fig. 10) 100
Mutation rate (Pm in Fig. 10) 10%
The max. number of generations (gmax in Fig. 10) 100
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7.2 Simulation Results

Fig. 12 shows how individuals increase the union of the

hypervolumes that they constrained-dominate in the

objective space as the number of generations grows in

the proposed EMOA, NSGA-II and SPEA2. The hyper-

volume metric quantifies the optimality and diversity of

individuals [23]. A higher hypervolume means that indi-

viduals are closer to the Pareto-optimal front and more

diverse in the objective space. As Fig. 12 shows, the pro-

posed EMOA rapidly increases its hypervolume mea-

sure in the first 10 generations and converges around

the 60th generation. At the last generation, all individ-

uals are non-constrained-dominated in the population.

This verifies that the proposed EMOA allows individ-

uals to efficiently evolve and improve their quality and

diversity within 100 generation.

Fig. 12 also compares evolutionary convergence among

the proposed EMOA, NSGA-II and SPEA2. All the

three EMOAs initially increase hypervolume measures

at a similar rate; however, the proposed EMOA con-

verges to a higher hypervolume measure than NSGA-II

and SPEA2. Fig. 12 shows that the proposed EMOA

outperforms NSGA-II and SPEA2 in the quality and

diversity of individuals.
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Fig. 12 Hypervolume

Table 2 compares the proposed EMOA, NSGA-II

and SPEA2 with the coverage metric (C-metric). This

metric compares two sets of individuals [24]. Given in-

dividual sets A and B, C(A,B) measures the fraction

of individuals in B that at least one individual in A

dominates:

C(A,B) =
|{b ∈ B | ∃a ∈ A : a � b}|

|B|
(9)

The C-metric values in Table 2 are computed with a

set of individuals that each EMOA produces at the last

generation. As shown in Table 2, C(Neuronal TDMA,

NSGA-II) is greater than C(NSGA-II, Neuronal TDMA)

(0.55> 0.0). Also, C(Neuronal TDMA, SPEA2) ¿ C(SPEA2,

Neuronal TDMA) (0.45 > 0.0). These results mean that

the proposed EMOA outperforms NSGA-II and SPEA2

in the quality of individuals. No individuals of NSGA-II

and SPEA2 can dominate the individuals of the pro-

posed EMOA.

Table 2 C-metric Comparison

C-metric value

C(Neuronal TDMA, NSGA-II) 0.55
C(NSGAII, Neuronal TDMA) 0.0

C(Neuronal TDMA, SPEA2) 0.45
C(SPEA2, Neuronal TDMA) 0.0

Fig. 13 illustrates the diversity of individuals with

the distribution metric This metric measures the degree

of uniform distribution of individuals in the objective

space. It is computed as the standard deviation of Eu-

clidean distances among individuals:√∑N−1
i=1 (di − d̄)2

N − 1
(10)

di denotes the Euclidean distance between a given

individual (the i-th individual in the population) and

its closest neighbor in the objective space. d̄ denotes

the mean of di. N denotes the number of individuals

in the population. The objective space is normalized

to compute the distribution metric. Lower distribution

means that individuals are more uniformly (or evenly)

distributed.

As shown in Fig. 13, all three EMOAs improve the

diversity of individuals as the number of generations

grows. At the last generation, the proposed EMOA’s

distribution is less than the half of NSGAII’s. Along

with the evaluation with the hypervolume metric, the

proposed EMOA outperforms NSGA-II and SPEA2 in

the diversity of individuals.

Table 3 shows the average of each objective value.

A value in parentheses indicates a standard deviation

of objective values that an EMOA yields in 20 inde-

pendent simulations. As this table illustrates, Neuronal

TDMA yields the best objective values on average in

all three objectives.

Table 3 Average Objective Values

fY fF fD

Neuronal TDMA 22 (4.33) 0.10 (0.33) 22.86 (5.11)
NSGA-II 16.56 (3.09) 0.07 (0.99) 31.87 (7.33)
SPEA2 18.34 (3.96) 0.08 (0.10) 25.99 (6.44)
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Table 4 shows how Neuronal TDMA yields three

objective values, respectively, subject to different sig-

naling delay constraints (CD). Neuronal TDMA suc-

cessfully meets both USD constraints. Given a more

strict USD constraint (CD = 17), it improves its fD
while degrading fY and fF . Table 4 demonstrate that

Neuronal TDMA can provide different optimization re-

sults under different constraints. This means that it

allows Body Area NanoNetwork designers to examine

various “what-if” analyses. For example, they can ex-

amine whether they can sacrifice fY by 35% and fF by

50% to improve fD by 25%. This way, Neuronal TDMA

aids Body Area NanoNetwork designers to make well-

informed scheduling decisions for signaling in Body Area

NanoNetwork.

Table 4 Objective Values with Constraints

fY fF fD

CD = 21 18 (3.1) 6.1 (0.9) 20.17 (0.89)
CD = 17 14 (2.5) 3.4 (0.4) 16.78 (1.01)

8 Conclusions

This paper considers neuron-based molecular communi-

cation, which utilizes natural neurons as a primary com-

ponent to build BANNs, and proposes an end-to-end

software architecture to manage and control neuron-

based Body Area NanoNetworks (BANNs) through a

series of software services. Those services aid to real-

ize end user applications. This paper investigates two

mechanisms in the proposed architecture: (1) an arti-

ficial assembly method to form neurons into specific

three-dimensional topology patterns and (2) a commu-

nication protocol for neuronal signaling, called Neu-

ronal TDMA. The assembly method uses silica beads

as growth surface and bead-bead contacts as geometri-

cal constraints on neuronal connectivity. A web lab ex-

periment verifies this method with neuronal hippocam-

pal cells. Neuronal TDMA leverages an evolutionary

multiobjective optimization algorithm (EMOA) to op-

timize the signaling schedules for nanomachines. Sim-

ulation results demonstrate that the Neuronal TDMA

efficiently obtains quality solutions.

Several extensions are planned over this work. First,

an extended set of simulations is planned to investigate

a neurotransduction BANNs (Fig. 4) while this paper’s

simulation study focuses on a neurosensory BANN. An-

other extension is to incorporate the notion of time

synchronization among nanomachines in simulations.

Moreover, the EMOA in Neuronal TDMA will be ex-

tended to handle noise in neuronal signaling and con-

sider an extra objective, communication robustness, in

addition to the current communication performance ob-

jectives (signaling yield, fairness and delay).
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