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Abstract—Communication among neurons is the highly evolved
and efficient nanoscale communication paradigm, hence the most
promising technique for biocompatible nanonetworks. This ne-
cessitates the understanding of neuro-spike communication from
information theoretical perspective to reach a reference model for
nanonetworks. This would also contribute towards developing
ICT-based diagnostics techniques for neuro-degenerative dis-
eases. Thus, in this paper, we focus on the fundamental building
block of neuro-spike communication, i.e., signal transmission
over a synapse, to evaluate its information transfer rate. We
aim to analyze a realistic synaptic communication model, which
for the first time, encompasses the variation in vesicle release
probability with time, synaptic geometry and the re-uptake
of neurotransmitters by pre-synaptic terminal. To achieve this
objective, we formulate the mutual information between input
and output of the synapse. Then, since this communication
paradigm has memory, we evaluate the average mutual informa-
tion over multiple transmissions to find its overall capacity. We
derive a closed-form expression for the capacity of the synaptic
communication as well as calculate the capacity-achieving input
probability distribution. Finally, we find the effects of variation
in different synaptic parameters on the information capacity and
prove that the diffusion process does not decrease the information
a neural response carries about the stimulus in real scenario.

Index Terms—Nanonetworks, molecular communication,
neuro-spike communication, information capacity, synaptic trans-
mission.

I. INTRODUCTION

Nanonetworks, foundation of the evolving field of Internet
of Bio-nano Things (IoBNT), are formed to perform the
complex tasks by expanding the capabilities of single Nanoma-
chines [1]. They have a wide range of applications, such
as intelligent drug delivery, health monitoring, development
of nano-robots, nano-processors and nano-memories. Since
molecular communication is found in biological systems,
understanding of this phenomenon is anticipated to greatly
facilitate the realization of bio-inspired nanoscale communi-
cation network [2], [3].

Information transmission within intra-body nervous system,
known as neuro-spike communication, is one of the most
investigated natural processes to understand molecular com-
munication [4]–[6]. This communication is performed using
two phenomena, i.e., propagation of electrochemical impulses
within neurons and releasing neurotransmitters across adjacent
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neurons. The electrochemical impulses are called action po-
tential (AP) or spike that travel along the axon of a neuron.
The transmitting neuron is termed as pre-synaptic neuron
while the receiving neuron is called post-synaptic neuron
as illustrated in Fig. 1. The axon of a pre-synaptic neuron
branches out at the end to form connections with several
post-synaptic neurons. The connection between these neurons,
known as synapse, is a small gap forming a synaptic cleft
between pre- and post-synaptic neurons. Arrival of a spike
to the pre-synaptic terminal initiates the fusion of vesicles
with the membrane. Then, the neurotransmitters stored inside
the vesicle are released into the cleft, which then diffuse
through the cleft and are captured by receptors present on
post-synaptic terminal generating excitatory or inhibitory post-
synaptic potential.

In nervous system, sensory information from outside world
as well as signals from other organs are encoded into AP’s,
which are transmitted through a neuronal network to be
processed by brain. Information theory provides a mean to
estimate the transmission capacity of this complex commu-
nication network along with quantifying the reliability of the
synaptic communication model [7] .

Neuro-spike communication has been studied from informa-
tion theoretical perspective at different levels of complexities
and for various network topologies [6], [8]–[10]. The capacity
of neuro-spike communication is evaluated in [8], [11] using
Hodgkin-Huxley (HH) model through numerical simulations.
In [9], the information transfer rate for single-input single-
output (SISO) system has been calculated under signal detec-
tion and signal estimation paradigms. Moreover, the closed-
form expression for the capacity of SISO and multiple-input
single-output (MISO) neuro-spike communication is derived in
[6] using probabilistic model. This work is further extended in
[12] to find the information rate in a SISO model with multiple
synaptic terminals between two neurons. In [10], the upper
bound of the capacity for a SISO synaptic communication
is derived using Bernoulli distribution to model diffusion of
neurotransmitters through the cleft, which ignores the synap-
tic geometry and the removal of residual neurotransmitters
from the cleft. All the above cited studies have ignored the
variability in the response due to (i) variations in vesicle
release probability with time as explained in [13] and (ii)
effect of synaptic geometry, diffusion of neurotransmitters and
their clearance from the synaptic cleft, which would affect
the mutual information, thus, capacity of the synaptic trans-
mission. Recently, the variation in vesicle release probability
is considered in [14], where it is shown that ignoring this
variation causes overestimation of capacity of vesicle release
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Fig. 1. Synaptic communication model.

process. Since, according to the data processing inequality,
further processing does not increase the information, all of the
above stated studies overestimated the capacity of the synaptic
communication. Moreover, the capacity is only evaluated for
the vesicle release process in [14], thus, there is a need to
evaluate the capacity of complete synaptic model.

The main contribution of our paper is to derive analytical
closed-form expressions for the information capacity of SISO
synaptic transmission using realistic communication model for
hippocampal pyramidal neurons. In our model, variation in
vesicle release probability due to memory of neuron from
previously released vesicles is taken into account. Moreover,
the diffusion model that considers the synaptic geometry
and clearance of neurotransmitters from the cleft between
successive transmissions is used. Since the arrival of spike
initiates the vesicle release process, the input of the system is
considered as spike train. Moreover, the maximum number of
bound receptors in response to each incoming spike is assumed
as output since it contributes to generating the post-synaptic
potential. We derive the information capacity and evaluate
capacity-achieving input distribution for this SISO commu-
nication system for each incoming spike, i.e. for a single
transmission. Then, to derive the overall capacity for multiple
transmissions, we evaluate average mutual information using
the steady-state release probability.

This whole study would serve as the basis for evaluating the
capabilities of bio-inspired nanonetworks that utilize neuro-
spike communication paradigm. Moreover, understanding of
intra-body nervous nanonetworks from information theoretical
perspective, would aid in designing ICT-inspired diagnostic
and treatment techniques for neurodegenerative diseases that
alter the typical ranges of the synaptic parameters. For in-
stance, Alzheimer’s disease (AD) reduces the available neuro-
transmitters [15], thus, decreasing the overall capacity of the
synaptic transmission. Therefore, the calculation done in this
paper would serve as the basis for the diagnosis of AD by
comparing the capacity of healthy and diseased synapses.

The remainder of the paper is organized as follows. The
synaptic communication model including vesicle release pro-
cess, diffusion and receptor binding is presented in Section II.
The overall capacity for multiple transmissions is derived in
Section III, and numerical results are provided and analyzed
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Fig. 2. Pool-based model for neurotransmitter release and replenishment.

in Section IV. Finally, the paper is concluded in Section V.

II. COMMUNICATION THEORETICAL MODELING OF
SYNAPTIC TRANSMISSION

In this section, we present the communication model for
three processes involved in synaptic transmission, i.e., vesicle
release, diffusion and neurotransmitter-receptor binding. This
communication model is later used to derive the maximum
mutual information between input and output of the system.

A. Vesicle Release Process

Synaptic transmission is initiated with the arrival of spikes
to the axonal terminal of the pre-synaptic neuron, which
allows the influx of calcium ions by opening the voltage
dependent calcium channels (VDCCs). After entering into the
pre-synaptic terminal, calcium ions diffuse inside it, where
they can bind to calcium buffers or sensors. Binding of enough
calcium ions with a calcium sensor, which is located near
the available vesicles for release, initiates the fusion of these
vesicles with membrane. This causes the release of the content
of vesicle, i.e., neurotransmitters, to the synaptic cleft [16].

In this paper, we consider existence of two distinct pools of
vesicles in the pre-synaptic terminal as suggested in [13] and
utilize the pool-based vesicle release and replenishment model
shown in Fig. 2. In this model, the ready pool (RP) contains
the vesicles ready for release, called readily releasable vesicles
(RRVs), and the unavailable pool contains the released vesicles
showing the capacity for replenishment of RP. In Fig. 2, the
capacity of RP, i.e., the number of RRVs when no vesicle is
released, is called Nmax . F(N) is the vesicle release probability
when N , N ≤ Nmax , vesicles are available in RP. The mean
recovery time for replenishment of one vesicle vacancy is τD
and G(τD,∆t) is the probability of refilling one vesicle after
∆t seconds.

As it is mentioned in [13], the number of vesicles that are
available to refill RP is much more than Nmax , hence, the
replenishment of one released vesicle can be modeled by the
first event of a Poisson process [17]. Thus, the probability of
one vacancy replenishment is derived as

G(τD,∆t) = 1 − exp
(
− τ−1

D ∆t
)

(1)

and the number of recovered vesicles after ∆t seconds is
derived based on Binomial distribution given by B(Nmax −
N,G(τD,∆t)).

Vesicles can release spontaneously or upon arrival of a
spike. Hence, we consider both of these scenarios while
deriving the vesicle release probability.

1) Evoked Release: After arrival of a spike to the pre-
synaptic terminal until release of a vesicle, the release of every
RRV is independent from others. However, after release of one
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vesicle, the others are temporarily prevented from release in
hippocampal pyramidal neurons [13]. Hence, we utilize the
uni-vesicular release model as given below.

The release probability for each of the existing vesicles in
RP is governed by a Poisson process with rate λv(t), which
is a function of (i) opening of VDCCs and their distance
from calcium sensors, (ii) binding of calcium ions to buffers,
calcium sensors and pumps, and (iii) diffusion of calcium ions
and buffers [18]. If a spike with duration equal to ∆ts arrives at
the pre-synaptic terminal at time t0, the vesicle release happens
in the time interval given by [t0, t0+∆ts]. Thus, the fusion rate
for each vesicle during a period of ∆t is defined as

αv(∆t) =
∫ t0+∆t

t0

λv(t)dt,

where ∆t ≤ ∆ts . Then, as a result of using the univesicular
release model, the probability of evoked release in the time
interval [t0, t0 + ∆t] is given as [6],

P{Release|Spike arrival} =
{

1 − exp(−Nαv(∆t)), ∆t ≤ ∆ts
1 − exp(−Nαv(∆ts)), ∆t > ∆ts

(2)
where N is the number of RRVs.

2) Spontaneous Release: The spontaneous vesicle release
is independent from evoked release. Since the average waiting
time for spontaneous release of each RRV is 480 s [19],
the spontaneous release probability from a synapse with N
vesicles during ∆t seconds is derived as follows.

P{Release|No spike} = 1 − exp(−N∆t
480
) (3)

B. Diffusion Process

After a vesicle release, neurotransmitters follow Brownian
motion to diffuse across the synaptic cleft. We consider the
synapse in the shape of a box with height H as shown in
Fig. 1. The top and bottom surfaces of the box correspond
to the pre- and post-synaptic membranes, respectively, and
are considered to be infinite in dimensions. This assump-
tion is in accordance with the diffusion model provided in
[20]. After vesicle is released from pre-synaptic terminal,
neurotransmitters are diffused through the cleft and captured
by post-synaptic receptors present on post-synaptic density
(PSD). PSD occupies a limited square shaped region on the
post-synaptic terminal with side length Lp as shown in Fig. 1.

The concentration of neurotransmitters in three-dimension
at any time t, denoted as C(x, y, z, t), is random and its
expected value can be calculated from Fick’s equation given
below,

∂C(x, y, z, t)
∂t

= Dc∇2C(x, y, z, t), (4)

where Dc is diffusion coefficient, t ≥ 0 and (x, y, z) ∈ R2 ×
[0,H]. While considering the reflections of neurotransmitters
from pre- and post-synaptic membranes and in presence of pre-
synaptic re-uptake of neurotransmitters, the solution of Fick’s
equation is given in [20]. This gives the expected concentration
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of neurotransmitters in the cleft as follows,

C(x, y, z, t) = T0

(
√

4πDct)3
e
(−x2−y2)

4Dc t{ −1∑
k=−∞
(2 − Pu)(1 − Pu)−(k+1)e

−(z−(2k+1)H )2
4Dc t

+

∞∑
k=0
(2 − Pu)(1 − Pu)ke

−(z−(2k+1)H )2
4Dc t

}
,

(5)

where T0 is the number of neurotransmitters in a vesicle and
Pu [uptake/hit] is the uptake probability.

On the receiver side, the neurotransmitters hit the receptors
and bind to them with some probability. According to [20],
we consider that receptors are uniformly distributed on the
PSD and the only neurotransmitters which are inside a small
volume, i.e., Ve, around each receptor are likely to bind.

To calculate the expected concentration of neurotransmitters
inside Ve, i.e., Ct , we assume that there is only one neurotrans-
mitter in the cleft. Thus, according to [20], the probability of
finding that neurotransmitter inside Ve at time t is given by

Pe(t) =
∭
Ve

C(x, y, z, t)dxdydz, (6)

where C is given by (5) with T0 = 1.
According to [20], all particles move independently from

each other. Thus, the number of neurotransmitters found inside
Ve at time t can be represented by a binomial random variable,
Te(t), having expected value

E [Te(t)] = Tt (t)Pe(t), (7)

where Tt (t) is the expected total number of unbound neuro-
transmitters in the cleft at time t. Thus,

Ct ≈
E [Te(t)]
|Ve |

(8)

where |Ve | is the size of the effective volume.

C. Neurotransmitter-Receptor Binding

PSD in hippocampal neurons contains two major kinds
of receptors, i.e., AMPA (α-Amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate).
However, we only consider AMPA receptors uniformly dis-
tributed in PSD since NMDA receptors contribute in synaptic
plasticity, which is not addressed in this paper. Binding of
neurotransmitters to AMPA receptors increases membrane
potential of post-synaptic neuron, i.e., generates excitatory
post-synaptic potential (EPSP).

To derive the probability of neurotransmitter binding to
an AMPA receptor, we utilize the simplified kinetic model
demonstrated in Fig. 3. As it is shown in [21], this simplified
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model provides fairly good approximations for the time course
and the dynamic behavior of synaptic currents compared to the
complex multi-state kinetic models.

When receptor r, r ∈ [1, R0], is in the closed state, i.e.,
Cr , it is available for binding to a neurotransmitter. After
binding, the receptor moves to the open state, i.e., Or , and
allows the influx of ions that changes the membrane potential
of post-synaptic terminal. The probability of being in each
of these states changes with time depending on the expected
concentration of neurotransmitters near receptor, i.e., Ct , as
given in the following equations,

dCr

dt
= −κbCrCt + κdOr,

Cr +Or =1,
(9)

where κb and κd are binding and dissociation rates for AMPA
receptors, respectively. Or and Cr also represent the opening
and closing probabilities of AMPA receptors, respectively, that
depend on both time and the position of the receptors.

III. CAPACITY ANALYSIS OF SYNAPTIC COMMUNICATION

The extensive analysis of synaptic transmission from in-
formation theoretical perspective is required to lay down
the foundation of bio-inspired nanonetworks. Thus, in this
section, we aim to derive the closed-form expression of the
capacity of the synaptic transmission that depends on the
availability of readily releasable vesicles, which changes with
time and depends on the previous vesicle releases. Therefore,
we discretize time into windows of equal durations, i.e., ∆t,
and select ∆t sufficiently small so that at most one spike can
exist at each window [6]. Note that by considering the width
of spike equal to ∆ts , ∆t must be selected greater than or equal
to ∆ts to have complete spike duration in one window.

In each time step, we can maximize mutual information
over all possible spiking probabilities to estimate capacity of
the system. However, since the number of RRVs changes over
time, the vesicle release probability also changes. Hence, ac-
cording to the definition, mutual information would also vary
with time. Thus, we need to find average mutual information
from 1st to nth time step and derive the spiking probability
that maximizes it to reach the overall capacity until time step
n. Finally, we extend this calculation to find the capacity of
synaptic transmission when n approaches to infinity.

A. Mutual Information in Each Time Step

The input and output of the synaptic communication model
shown in Fig. 4 are Sn and Bn,max , respectively, in nth time

slot. Here, Sn depicts the existence of spike at input and Bn,max

shows the maximum number of bound receptors at the post-
synaptic terminal as a result of vesicle release. Hence, the
mutual information of the system at each time step can be
defined as follows,

I(Sn, Bn,max) = H(Bn,max) − H
(
Bn,max |Sn

)
, (10)

where the entropies in (10) follow the general formula given
as H(Xn) = −

∑
i P{Xn = i} log2 P{Xn = i}.

By conditioning over the spike arrival, we can write the
probability P{Bn,max = i} as given below,

P{Bn,max = i} =
1∑
j=0

P{Bn,max = i |Sn = j}P{Sn = j}, (11)

where i ∈ [0, R0] and R0 is the total number of receptors on the
post-synaptic terminal. Same as [6], [9], we model the spike
arrival with a Poisson process. Hence, assuming the rate of
this process as λ, the probability of spike arrival at nth time
slot can be calculated as P{Sn = 1} = 1 − exp(−λ∆t) , p.

To derive the probability P{Bn,max = i |Sn = j}, we can
condition over the vesicle release process as follows.

P{Bn,max = i |Sn = j} =
1∑

k=0
P{Bn,max = i |Vn = k}P{Vn = k |Sn = j},

(12)

where Vn indicates the release of vesicle in nth window. Since
the neurotransmitters are removed from synaptic cleft between
successive vesicle releases through re-uptake and diffusion
[20], the synaptic noise due to residual neurotransmitters is
not significant in healthy neurons and we consider P{Bn,max =

0|Vn = 0} = 1.
To find the probability P{Bn,max = i |Vn = 1}, we define the

opening probability of rth receptor as Or (t), where r ∈ [1, R0]
and 0 ≤ t ≤ ∆t. As shown in [20], a smaller time step called
∆τ << ∆t can be used to calculate Or (t) in each ∆t. We are
interested in the maximum number of bound receptors, Bn,max ,
since it contributes to the peak of EPSP. After binding to a
neurotransmitter, the receptors stay in open state until EPSP
reaches its maximum value. Hence, utilizing the maximum
opening probability for rth receptor during nth time step,
i.e., Or,n = max0≤t≤∆t

(
Or (t)

)
, we can calculate Bn,max by

defining the variable xr,n as follows.

xr,n =

{
0, 1 −Or,n

1, Or,n

. (13)

The
R0∑
r=1

xr,n shows the maximum number of open receptors

during time step ∆t. Hence, the probability of having i open
receptors upon vesicle release, i.e., P{Bn,max = i |Vn = 1}, is

equal to P{
R0∑
r=1

xr,n = i}, which can be modeled by Poisson

Binomial distribution with mean, µn, and variance, σ2
n , as

shown in [22],

µn =

R0∑
r=1

Or,n, (14)
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σ2
n =

R0∑
r=1

Or,n(1 −Or,n). (15)

Thus, the probability P{Bn,max = i |Vn = 1} is calculated as
follows,

P{Bn,max = i |Vn = 1} = 1
R0 + 1

R0∑
l=0

E−li
R0∏
r=1

[
1+(E l−1)Or,n

]
,

(16)
where E = exp( 2

√
−1π

R0+1 ).
Next step is deriving the conditional vesicle release prob-

ability given in (12), i.e., P{Vn = k |Sn = j}. As it is shown
in Fig. 4, a binary channel can be used to model the vesicle
release process at each time step. According to (2) and (3)
and the pool-based vesicle release and replenishment model
depicted in Fig. 2, the probability of release in nth time slot
when RP has N vesicles is expressed as follows,

P{Vn = 1|Nn = N, Sn = 1} = 1−exp
(
−Nαv(∆ts)

)
, Pe, (17)

P{Vn = 1|Nn = N, Sn = 0} = 1 − exp
(
− N∆t

480
)
, ε, (18)

where (17) shows the probability of evoked release, (18)
depicts the spontaneous release probability and Nn indicates
the number of available vesicles in RP at the beginning of nth
time slot. Then, the conditional vesicle release probability can
be written as follows,

P{Vn = k |Sn = j} =
Nmax∑
N=0

P{Vn = k |Nn = N, Sn = j}P{Nn = N}.

In [14], an array named Pn is defined with dimension 1 ×
(Nmax + 1) having ith element equal to P{Nn = i − 1}. Then,
a recurrence relation is derived for Pn as follows,

Pn = Pn−1DR. (19)

Here, D and R are (Nmax+1)×(Nmax+1) matrices indicating the
impact of pool depletion and replenishment on the probability
of having a given number of RRVs, respectively. To derive the
probability of having different number of RRVs in time slot
n, (19) is simplified to Pn = P1(DR)n−1, where P1 is equal to
[0, 0, ...., 0, 1] indicating that RP is full, i.e., N = Nmax , before
the arrival of spikes.

The (i, j)th element of D, i.e., Di j , represents the probability
of transition from having Nn−1 = i−1 to Nn = j−1 as a result
of vesicle release. Since we are using the univesicular release
model, at most one vesicle can be released from the pool.
Hence, the nonzero elements of matrix D occur only where
j ∈ {i, i−1} and can be derived from vesicle release probability
shown in Fig. 2, Fn(.), as Dii = 1 − Fn(i − 1) and Di(i−1) =
Fn(i−1). Using the spiking probability, p, and the probabilities
given in (2) and (3), the vesicle release probability in nth slot
when RP has i vesicles, i.e., Fn(i), involving both spontaneous
and evoked releases, is derived as follows,

Fn(i) = 1 −
[
exp

(
− iαv(∆ts)

)
p + exp

(
− i∆t

480
)
(1 − p)

]
. (20)

The (i, j)th element of R, i.e., Ri j , represents the probability

of transition from having Nn−1 = i − 1 to Nn = j − 1 as
a result of vesicle replenishment process. Since the number
of refilled vesicles when the RP has i RRVs can be derived
from Binomial distribution given by B(Nmax − i,G(τD,∆t)) as
explained in Section II-A, the matrix R is an upper triangular
matrix whose (i, j)th element for ∀ j ≥ i is defined as follows,

Ri j =

(
Nmax − (i − 1)

j − i

)
G(τD,∆t)j−i

(
1 − G(τD,∆t)

)Nmax−(j−1)
.

B. Information Capacity of synaptic transmission
We define the maximum mutual information achieved dur-

ing first n time slots as Cn = maxp
∑n

l=1
I (Sl ;Bl,max )

n . Then,
the overall capacity of synaptic communication is defined
as C = lim

n→∞
Cn, for which we evaluate the convergence of

I(Sn; Bn,max). Based on the recurrent equation given by (19),
the number of vesicles in RP can be modeled by a finite-
state Markov chain. Moreover, the steady state probability of
each state in this Markov chain, i.e., π = [π0, π1, . . . , πNmax ],
can be derived by solving the linear equations π = πDR and∑Nmax

i=0 πi = 1. Then, to find lim
n→∞

I(Sn; Bn,max), we calculate
the limit of (12) when n tends to infinity as follows,

lim
n→∞

P{Bn,max = i |Sn = j} =
1∑

k=0
P{Bn,max = i |Vn = k}

Nmax∑
N=0

P{Vn = k |Sn = j, Nn = N}πN .

Now, the limit of (11) as n tends to infinity is found as

lim
n→∞

P{Bn,max = i} =
1∑
j=0

P{Sn = j} lim
n→∞

P{Bn,max = i |Sn = j}.

Therefore, the mutual information, I(Sn; Vn), converges as
given below.

lim
n→∞

I(Sn; Bn,max) = H( lim
n→∞

Bn,max) − H( lim
n→∞

Bn,max |Sn)

, I∞,
(21)

where the entropies in the above equation follow the general
formula given as

H( lim
n→∞
Xn) = −

∑
i

lim
n→∞

P{Xn = i} log2

(
lim
n→∞

P{Xn = i}
)
.

Considering the binary channel of vesicle release block in
Fig. 4, since the crossover probability when there is no spike at
input, ε , is very small in real scenario, the mutual information
at the output of this block decreases if Pe reduces. Since
the number of RRVs decreases with time as a result of pool
depletion; according to (17), the evoked release probability, Pe,
thus, I(Sn; Vn), also reduces with time. Moreover, according to
data processing inequality, further processing does not increase
the information. Hence, I(Sn; Bn,max) also decreases with
time. Furthermore, according to (21), I(Sn; Bn,max) converges
to I∞, thus, its average over time also converges to I∞, i.e.,

lim
n→∞

n∑
l=1

I(Sl; Bl,max)
n

= I∞, (22)
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TABLE I
SIMULATION PARAMETERS

Parameters Symbols Values
Synaptic cleft height H 20 nm [23]
Diffusion coefficient Dc 0.33 µm2/ms [24]
Side length of PSD Lp 0.4 µm [20]
Number of receptors R0 441 [25]
Pre-synaptic Re-uptake Pu 10% [20]
Binding Rate of AMPA κb 78 × 106 1

Ms [26]
Dissociation Rate of AMPA κd 750 s−1 [26]
Effective Volume Ve 1 × 1 × 0.5 nm3

Simulation time step ∆τ 3.85 ns [20]
Spike width ∆ts 4 ms [16]
Discretization time step ∆t ∆ts [14]
Average fusion rate αv(∆ts) 0.06

√
N [27]

Mean vacancy recovery time τD
0.6

Nmax
[17]

and the capacity of synaptic communication can be calculated
as follows,

C = max
p

I∞. (23)

IV. EVALUATION

In this section, we intend to evaluate the capacity of the
synaptic communication and find how it is affected by varying
different synaptic parameters. Since the output of the system,
i.e., the maximum number of bound receptors, depends on
spiking probability, p, capacity of RP, Nmax , and number
of neurotransmitters in a vesicle, T0, we first evaluate the
impact of these parameters on the mutual information between
input and output. The values of all simulation parameters are
selected from the experimental studies as shown in Table
I. Furthermore, we highlight how the mutual information
changes over the multiple synaptic transmissions. Thus, we
calculate the average mutual information over n transmissions
and maximize it to find the capacity until nth time slot. Finally,
with the use of steady-state probability of number of RRVs,
we find the overall mutual information and capacity along with
the capacity-achieving input probability distribution.

A. Mutual Information in Each Time Step

In this section, we calculate the mutual information in
each time step for different values of synaptic parameters,
i.e., Nmax and T0, and spiking probability, p, and discuss the
effects of changing these parameters on information transfer
rate. Since the vesicle release process is the only part of the
system that has memory, i.e., the number of RRVs changes
after each transmission, we analyze the impact of variation of
number of RRVs with time on mutual information. Among
the aforementioned parameters, T0 is not affecting the number
of RRVs, hence the average number of available vesicles for
release is plotted for different values of Nmax and p in Fig. 5.

The pool-based vesicle release and refill model shown in
Fig. 2 is used to derive the statistics of number of RRVs.
As it is shown in Fig. 5, the number of RRVs reduces with
time, thus, we can conclude that the release rate of vesicles
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Fig. 5. Average number of available vesicle for release for different (a)
capacity of ready pool, Nmax and (b) spiking probabilities, p.

is faster than their refill rate, i.e., the neuron does not have
enough time between multiple transmissions to refill all of
the released vesicles. It can also be observed in Fig. 5(a)
that increasing Nmax increases the average number of vesicles
available in each time slot. This is due to two reasons, i.e.,
higher value of Nmax results in (i) having more number of
RRVs in the beginning of simulation, and (ii) faster vacancy
replenishment according to the definition of τD given in Table
I. Moreover, according to Fig. 5(b), increasing the spiking
probability, p, while keeping Nmax fixed, decreases the average
number of RRVs. Since the evoked release probability, Pe,
is higher than spontaneous release probability, ε , increasing
spiking probability, p, causes the release of more number of
vesicles in multiple transmissions. Moreover, the refill rate is
constant, thus, the average number of RRVs decreases with
time by increasing spiking probability, p.

The mutual information between input and output of the
system is shown in Fig. 6 for different values of Nmax , T0
and p. It is observed that the mutual information reduces over
time. The reason of this reduction can be explained considering
the binary channel of vesicle release block in Fig. 4. Since the
crossover probability when there is no spike at input, ε , is very
small in real scenario, the mutual information at the output
of this block would be maximum if (1 − Pe) tends to zero,
i.e., as the evoked release probability, Pe, increases. On the
other hand, the diffusion and binding processes cannot increase
the information about input according to the data processing
inequality. Thus, the overall mutual information of the system
is directly related to the evoked release probability. According
to (17), this release probability decreases with reduction in the
number of RRVs and the average number of RRVs reduces
with time as shown in Fig. 5. Therefore, mutual information
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Fig. 6. Mutual information between spiking and maximum number of bound receptors for different (a,d) capacity of ready pools, Nmax , (b,e) number of
neurotransmitters in a vesicle, T0, and (c,f) spiking probabilities, p.

also reduces over time as shown in Fig. 6. Moreover, since the
number of RRVs, Nn, eventually reaches its steady state value
according to the Markov chain model indicated in Section
III-B, mutual information also saturates to a constant value.

In Fig. 6(a), the mutual information is plotted against
time for different values of Nmax . It can be observed that
the reduction rate of mutual information decreases with the
increase in the value of Nmax . This is due the fact that high
values of Nmax leads to higher number of RRVs, Nn, in each
time slot as shown in Fig. 5(a), which saturates the evoked
release probability, Pe, according to (17). Therefore, the rate of
change of mutual information tends to zero for higher values
of Nmax as shown in Fig. 6(a) and Fig. 6(d). Furthermore,
for very low values of Nmax , the signal transmission happens
rarely, thus, mutual information is close to zero for all time.

It can also be observed in Fig. 6(a) and Fig. 6(d) that in
each time slot we have higher value of mutual information
as the value of Nmax increases. This is due to having more
number of RRVs, thus, higher evoked release probability, as a
result of increasing Nmax .

Next, we evaluate the effect of changing the number of
neurotransmitters in a vesicle, T0, on mutual information. We
select Nmax as 10, which is reported in [28] for average
capacity of RP in hippocampal pyramidal neurons. As can
be observed in Fig. 6(b) and Fig. 6(e), the output has more
information about input if there is a higher number of neu-
rotransmitters in a vesicle. Moreover, the mutual information
attains saturation after certain value of T0 as a result of having
enough bound receptors to detect the signal transmission in
case of spike arrival. Furthermore, for very low values of T0,
the neurotransmitters are lost in the cleft or uptaken by the pre-
synaptic terminal before reaching the post-synaptic receptors,

thus, resulting in lower value of mutual information.
The change in mutual information of synaptic transmission

with respect to spiking probability is shown in Fig. 6(c) and
Fig. 6(f). The mutual information decreases with higher rate
with increasing spiking probability as shown in Fig. 6(c). This
is due to more reduction in the number of RRVs by increasing
spiking probability as shown in Fig. 5(b). Moreover, since
the number of RRVs, Nn, changes with time, the spiking
probability that maximizes mutual information also changes
in each time slot. This change is apparent in Fig. 6(f) as the
peak of mutual information is moving towards left.

The mutual information between spiking and output of
vesicle release process is reported in [14]. By comparing
the achievable mutual information for the overall synaptic
communication shown in Fig. 6 and the results of [14], we can
see that the diffusion and binding processes do not decrease
the mutual information after certain value of T0. Thus, we can
conclude that if the value of T0 is very high, which is the case
in real scenario [29], enough amount of the released vesicle
are always received by the post-synaptic neuron, which shows
the reliability of the synaptic system.

B. Average Mutual Information and Capacity for n Synaptic
Transmissions

In the previous section, we observed that the mutual in-
formation changes with time, hence we need to find average
mutual information over several transmissions to evaluate the
capacity of synaptic communication. The mutual information
averaged over n consecutive time slots, always starting from
the first time slot, is shown in Fig. 7. It is apparent in the figure
that average mutual information reduces as the system use
increases, which is a result of the depletion of RP. Moreover,
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the spiking probability that maximizes the average mutual
information is also decreasing with time as indicated by the
peak of the curve that moves towards left.

The average mutual information is maximized over spiking
probability, p, to calculate the capacity over multiple transmis-
sions, for different values of Nmax and T0 as shown in Fig.
8. The capacity reduces with time as a result of reduction in
mutual information over multiple transmissions as observed in
Fig. 6. Moreover, increase in both Nmax and T0 increases the
capacity as a result of higher vesicle release probability and
increased chances of neurotransmitters to reach the receptors,
respectively. Furthermore, as we have seen in Fig. 6(e), the
mutual information in each time step saturates with increasing
T0. Hence, it can be observed in Fig. 8(b) that the capacity of
the system over multiple uses also saturates after a specific
value of T0.

C. Mutual Information and Capacity at Steady-State

To evaluate the capacity of synaptic communication, we
calculated the steady state probabilities of having different
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Fig. 9. Average mutual information of the system, system capacity and
capacity-achieving spiking probability in steady state for T0 = 500 and
different values of Nmax .

number of RRVs and use them to derive the mutual infor-
mation between input and output of the system as n tends
to infinity, I∞. This also corresponds to the average mutual
information evaluated over infinite consecutive time slots as
given by (22).

The I∞ is plotted against spiking probability for different
values of Nmax and T0 in Fig. 9(a) and Fig. 10(a), respectively.
Similar to the average mutual information, we can observe
that I∞ also increases with Nmax and T0. Moreover, I∞
is maximized over spiking probability, p, to calculate the
capacity for different values of Nmax and T0 as shown in Fig.
9(b) and Fig. 10(b), respectively. Since changing the Nmax

affects the number of RRVs, which in turn affects the steady
state probabilities of having different number of RRVs, the
capacity-achieving spiking probability also changes as shown
in Fig. 9. However, as it can be seen in Fig. 10, changing T0
does not change capacity-achieving spiking probability since
it is not affecting the availability of vesicles.

It can also be observed from Fig. 9(b) and Fig. 10(b)
that capacity improves with increasing Nmax and T0, respec-
tively. This is a result of dependence of I∞ on these factors
as explained earlier. As it can be observed in Fig. 10(b),
the capacity reaches the maximum value for T0 around 10.
However, more number of bound receptors is needed for
spike generation, thus, there are more neurotransmitters in a
vesicle in real scenarios. Selecting the system parameters as
reported in experimental studies for hippocampal pyramidal
neurons, i.e., Nmax = 10 [26] and 500 ≤ T0 ≤ 3000
[29], [30], the capacity of synaptic communication model for
information transmission among these neurons is calculated as
C = 0.44 bits/slot = 110 bits/s. These results can be compared
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with the results obtained from the diseased synapses to have
an ICT-inspired diagnosis technique for neurodegenerative
diseases. Moreover, for designing a molecular communication
based nanonetworks, these results can be used to decide about
the optimal parameters to achieve maximum capacity.

V. CONCLUSION

In this paper, we analyzed a realistic physical reference
model as the most basic realization of nanonetworks that
utilize neuro-spike communication paradigm from information
theoretical perspective. We formulated the mutual information
between input and output of a SISO synaptic communication
for a single transmission. Since this system has memory, we
found the average mutual information over multiple transmis-
sions to evaluate its overall capacity. Moreover, we derived a
closed-form expression for the capacity of synaptic transmis-
sion and calculated the capacity-achieving spiking probability.
Finally, we found the effects of change in various synaptic
parameters, such as spiking probability, number of readily
releasable vesicles (RRVs) and number of neurotransmitters
in a vesicle, on the information capacity of the system.
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