
BitSimulator, a C++ wireless nanonetwork
simulator for routing and transport levels
Introduction
BitSimulator is dedicated to wireless nanonetworks simulations. Nanonetwork's nodes are of
micrometric dimensions. As such, they have drastic constraints on memory, energy and CPU. Those
constrains along with the possibility of extremely high neighborhood densities call for specific network
protocols.

BitSimulator has been designed to allow simulation of application or routing protocols while keeping a
relatively detailed model for the MAC and physical levels. As such, it enables exploration and
understanding of the effects of low level coding and channel access contention. For its Medium Access
Control, BitSimilator uses the TS-OOK modulation proposed by Josep Jornet.

BitSimulator differs from other network simulators as it is completely dedicated to wireless and
potentially very dense nanonetworks. Due to fine memory management and clever optimizations,
simulations of up to hundreds of thousands of nodes are possible on a laptop. Of course, running time
greatly varies with the complexity of the simulated scenario and with neighborhood density.

We actively develop the simulator, feel free to use it and contact us for any remark.

Be sure to have also read the NanoCom conference paper describing it.

Examples of BitSimulator usage
We use the simulator to discover behaviours of communications in naonnetworks and to validate our
algorithms and protocols. You might be interested by the following articles which use the simulator in
the evaluation part:

 overview of the simulator and some examples of use
 density estimator
 backoff flooding
 deviation routing and code to reproduce the results.
 sleeping mechanism and code to reproduce the results.
 sleeping mechanism on heterogeneous networks and info on how to reproduce the results.
 ring-based forwarding and code to reproduce the results.

Features
 Propagation delay: packet arrival time on a node depends on its distance from the sender

(extremely important considering the duration of TS-OOK pulses).
 Collisions: computation of collisions uses the TS-OOK model by checking the actual bit value of

each packet currently being received at each node.
 Being very focused on nanocommunications, its design is kept simple and efficient. It allows it

to scale up to hundred of thousands of simulated nodes.

mailto:dominique.dhoutaut@univ-fcomte.fr
http://eugen.dedu.free.fr/publi/nanocom18.pdf
http://eugen.dedu.free.fr/publi/nanocom18.pdf
http://eugen.dedu.free.fr/publi/icccn18.pdf
http://eugen.dedu.free.fr/publi/nca18.pdf
http://eugen.dedu.free.fr/publi/nanocom19.pdf
http://eugen.dedu.free.fr/bitsimulator/deviation
http://eugen.dedu.free.fr/publi/softcom20.pdf
http://eugen.dedu.free.fr/bitsimulator/sleeping
https://www.itu.int/dms_pub/itu-s/opb/jnl/S-JNL-VOL2.ISSUE7-2021-A05-PDF-E.pdf
http://eugen.dedu.free.fr/bitsimulator/sleeping-hetero.zip
http://eugen.dedu.free.fr/publi/wcnc22.pdf
http://eugen.dedu.free.fr/bitsimulator/wcnc22

 A simple infrastructure helps to build new routing protocols of applications (C++ classes to
derive from).

 It implements several protocols: SLR routing protocol, probabilistic flooding, backoff flooding,
SLR backoff flooding, and others

 It comes with a visualisation tool, VisualTracer.
 And much more.

The manual below gives more information about features and limitations.

Tutorial / Get started with BitSimulator

First steps with the simulator

Create a directory, e.g. example. Then create inside an XML file named scenario.xml containing the
following lines:

Then start the simulation with the above scenario with the following command line:
./bitsimulator -D example

The simulation generates several log files in the directory, the most important being events.log file,
which traces all basic events in the network, such as packet receptions and emissions.

Note that a lot of parameters from the configuration file can be overwritten by options given in
command line. This is especially useful when doing batch runs from shell scripts. For more information
on the available options use:
./bitsimulator -h

BitSimulator has a built-in graphic mode which appears when started with the option -g. It opens an
SDL window displaying the propagation of packets during the simulation. It is very useful when
debugging your own protocols and applications to detect and prematurely end useless simulations.

 <w orld sizeX_nm="6000000" sizeY_nm="0" sizeZ_nm="6000000">
 <genericNodes count="1000" positionRNGSeed="1"/>
 </w orld>

 <modulation>
 <ts-ook pulseDuration_fs="100" defaultBeta="1000"
 defaultCommRange_nm="500000" maxConcurrentReceptions="10"
 minIntervalBetw eenSends="1000" minIntervalBetw eenReceiveAndSend="1000
 </modulation>

 <routing defaultBackoffWindow ="10000" backoffRNGSeed="1">
 <PureFloodingRouting/>
 </routing>

 <applications>
 <cbr f low Id="0" srcId="3" dstId="10" port="3001" packetSize="1000"
 repetitions="3" interval_ns="300000" startTime_ns="6000000"/>
 </applications>

 <log/>
</scenario>

http://eugen.dedu.free.fr/publi/nanocomnet17.pdf

First steps with VisualTracer

Once the simulation ended, the simulation progress from
the beginning can be visualized step by step with VisualTracer using the following command (in
visualtracer directory):
./visualtracer -D ../example

Documentation
The user's and developer's manual, with tutorials too.

The API documentation can be generated with doxygen.

Download
The simulator works on GNU/Linux and macOS.

We currently use a private git repository for the simulator. Until it gets public, the simulator can be
downloaded as a tar.gz file (v0.9.4+, as of 8 May 2021). It is licensed as GPL. Note that this is the stable
version, which might be outdated in some respects compared to the information in this web page.

Installation
This is done through the usual ./configure && make && make install triplet, and optionally make
check.

configure checks for required dependencies: pkg-config, tinyxml2, sdl2, sdl2_gfx, sdl2_ttf, tclap. For
macOS you could install these dependencies using homebrew for example (note that macports does not
have tinyxml2 for example).

make install is optional, it just copies the two binary files bitsimulator and visualtracer to the
installation directory, but you can execute them from the source directory directly if you prefer.

You might also execute make check, which executes a short simulation and tests its result.

Contact
Dominique Dhoutaut, associate professor at University of Franche-Comté, France.

http://eugen.dedu.free.fr/bitsimulator/manual.pdf
http://eugen.dedu.free.fr/bitsimulator/bitsimulator-0.9.4+.tar.gz
mailto:dominique.dhoutaut@univ-fcomte.fr
http://eugen.dedu.free.fr/bitsimulator/bitsimulator.png

