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Abstract

This paper describes the in vitro cytotoxicity assessment of single walled carbon nanotubes (SWCNT) on A549 cells, a human lung cell
line. Cellular viability was determined using the alamar blue (AB), neutral red (NR) and MTT assays, which evaluated metabolic, lyso-
somal and mitochondrial activity respectively. In addition, the total protein content of the cells was measured using the coomassie bril-
liant (CB) blue assay. Supernatants were also assayed for Adenylate Kinase (AK) release and Interleukin 8 (IL-8) which indicated a loss
of cell membrane integrity and an inXammation response respectively. To investigate the interactions between serum components in the
test medium and the test materials, exposures were conducted both in serum containing (5%) and serum-free medium. Results from the
cytotoxicity tests (AB, CB, MTT) revealed the SWCNT to have very low acute toxicity to the A549 cells as all but one of the reported 24 h
EC50 values exceeded the top concentration tested (800 �g/ml). The SWCNT were found to interfere with a number of the dyes used in the
cytotoxicity assessment and we are currently conducting a comprehensive spectroscopic study to further investigate these interactions. Of
the multiple cytotoxicity assays used, the AB assay was found to be the most sensitive and reproducible. Transmission electron micros-
copy (TEM) studies conWrmed that there was no intracellular localization of SWCNT in A549 cells following 24 h exposure; however,
increased numbers of surfactant storing lamellar bodies were observed in exposed cells.
©  2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Nanotechnology is widely perceived as one of the key
technologies of the 21st century and accordingly there have
been huge advances and increased funding in global tech-
nological research on nanomaterials. Single wall carbon
nanotubes (SWCNT) are considered to have extensive
commercial application potential due to their excellent
mechanical, electrical and magnetic properties (Paradise
and Goswami, in press). The broad range of increasing
nanotechnology applications for SWCNT will almost cer-

tainly result in the increased potential for both human and
environmental exposures to this nanomaterial. It is, there-
fore, imperative that toxicological research to evaluate the
biocompatibility and possible adverse eVects on both the
health of humans and the environment is conducted con-
comitantly with technological research and development on
nanomaterials (Dreher, 2004; Oberdörster et al., 2005; Tho-
mas and Sayre, 2005).

Due to their size, SWCNT can easily become airborne
and inhaled, hence the evaluation of their pulmonary eVects
has received a considerable amount of interest and a num-
ber of in vivo and in vitro studies have been performed to
date. Several studies on the eVects of both reWned and raw
CNT on the lung tissue of various animal models have been
reported and there appears to be some inconsistency
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between the research Wndings (Huczko et al., 2001; Lam
et al., 2004; Shvedova et al., 2005; Warheit et al., 2004).
These studies highlighted the inherent diYculty in testing
CNT due to their agglomerative nature in aqueous solu-
tions; indeed some of the observed mortality was attributed
to mechanical blockage of the airways resulting in asphyxi-
ation (Warheit et al., 2004). It is now recognised that in
order to elucidate the mechanisms of the pulmonary toxic-
ity observed in these preliminary studies further more real-
istic in vivo inhalation studies with aerosolised SWCNT
need to be conducted (Muller et al., 2006; Smart et al., 2006;
Warheit, 2006).

A number of in vitro studies have also been performed
on SWCNT with varying metal content and have evaluated
diVerent mechanistic endpoints. Shvedova et al. (2003)
tested iron-rich (30 wt.% iron) SWCNT on human epider-
mal keratinocytes (HaCaT) and following 18 h exposure
reported oxidative stress and loss of cell viability. They also
observed that exposure resulted in ultrastructural and mor-
phological changes in these skin cells. Recently, Kagan
et al. (2006) demonstrated that iron-rich SWCNT (26 wt.%
iron) resulted in a signiWcant loss of intracellular low
molecular weight thiols (GSH) and accumulation of lipid
hydroperoxides in murine macrophages. Fiorito et al.
(2006) investigated the eVects of highly puriWed fullerenes
and SWCNT on murine and human macrophages and
found these materials did not stimulate the release of the
inXammatory marker nitric oxide by murine macrophage
cells in culture. In addition, they also demonstrated the
uptake of each material by human macrophages to be very
low and that each possessed a very low toxicity against
human macrophage cells. Jia et al. (2005) exposed SWCNT
(with trace amounts of metal catalysts) to alveolar macro-
phages isolated from guinea pigs for 6 h and found that the
SWCNT elicited a more toxic response than multi walled
CNT (MWCNT), quartz and fullerene. SWCNT have also
been tested on human embryo kidney cells (HEK293) and
were found to inhibit the proliferation of these cells by
inducing cell apoptosis and decreasing cellular adhesive
ability (Cui et al., 2005). As with the in vivo studies dis-
cussed earlier, diVerences in SWCNT toxicity and biocom-
patibility have also been observed with the various in vitro
tests and these discrepancies can most likely be attributed
to the varying percentages of catalysts and other impurities
in the tested SWCNT, in addition to the diVerent dispersion
methods employed to date (Smart et al., 2006).

The objective of this study was to perform a comprehen-
sive in vitro cytotoxicity assessment of SWCNT (10 wt.%
iron) on A549 cells, a human epithelial-like lung cell line.
Quartz was tested in parallel exposures to provide a bench-
mark of particle toxicity. As we have recently found that
there was signiWcant interaction between the SWCNT and
foetal bovine serum (FBS) present in the test medium
(Casey et al., in press), particle exposures were conducted
both in serum containing (5%) and serum-free cell culture
medium. Cytotoxicity parameters evaluated in this study,
following 24 h exposure to both materials included the met-

abolic, lysosomal, and mitochondrial activities of the cells.
In addition total protein content, cell membrane integrity
and inXammation responses were also measured. The pres-
ent study also employed TEM to characterise the SWCNT
pre exposure, to investigate if the SWCNT were interna-
lised by these lung cells and to examine for any ultrastruc-
tural changes in cell morphology post exposure.

2. Materials and methods

2.1. Test materials

HiPco® derived SWCNT were purchased from Carbon
Nanotechnologies, Inc. (Houston, TX). This material con-
tained 10 wt.% iron. The diameter distribution of these
HiPco® tubes was previously determined to be 0.8–1.2 nm
by Raman spectroscopy conducted in our laboratory
(Gregan et al., 2003). Quartz powder (CertiWed Reference
Material, BCR No. 66) with a particle distribution of 0.35–
3.50 �m was employed as a positive control and obtained
from Sigma Aldrich Ltd. (Dublin, Ireland). This standard
quartz sample was mined in Frechen, Germany and is
mostly silicon dioxide with trace amounts of iron (0.4 mg g¡1),
titanium (0.26 mg g¡1), sodium (0.09 mg g¡1) and calcium
(0.06 mg g¡1).

2.2. Reagents

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT), Coomassie Brilliant Blue 250 (CB) and Neu-
tral Red (NR) were all purchased from Sigma Aldrich Ltd.
(Dublin, Ireland). The ToxiLight™ kit for Adenylate
Kinase (AK) analysis was purchased from Cambrex BioSci-
ence (Wokingham Ltd., UK). Alamar Blue™ (AB) and the
Human Interleukin 8 (IL-8) CytoSet™ were purchased from
Biosource (UK). Cell culture media and supplements and
the trypsinisation solution were purchased from Biosciences
(Dublin, Ireland).

2.3. Cell culture

A549 cells (ATCC, CCL-185) a human lung carcinoma
epithelial cell line were employed for testing. Cells were cul-
tured in Kaighn’s medium (F12K) with 2 mM L-glutamine
supplemented with 10% foetal bovine serum (FBS) and
45 IU ml¡1 penicillin and 45 �g ml¡1 streptomycin at 37 °C
in 5% CO2 humidiWed incubator.

2.4. Dispersion of nanomaterials

Stock suspensions of SWCNT and quartz were prepared
both in serum containing (5%) and serum-free (0%)
medium. An ultrasonic tip (Ultra sonic processor VCX-
750 W) at amplitude of 40% for a total time of 30 s carried
out in 10 s sequential steps was employed to disperse the
suspensions prior to preparation of test concentrations.
The suspensions were prepared by dispersing an initial
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concentration of 800 �g/ml of each material by sonication.
Each stock concentration was then serially diluted on the
96-well plate with each type of medium to prepare test con-
centrations. Cells were then exposed to the same concentra-
tion range of SWCNT and quartz (1.56, 3.12, 6.25, 12.5, 25,
50, 100, 200, 400, 800�g/ml) prepared in both 5%-F12K
and 0%-F12K medium. Transmission electron microscopy
(TEM) was performed using a Jeol 100CX TEM, on raw as
purchased HiPco® SWCNT by dispersing 1 mg of SWCNT
in 10 ml ethanol with the aid of a sonic tip, the dispersion
was then dropcast onto 200 nm formvar coated copper
grids for examination.

2.4.1. Cytotoxicity assays
For cytotoxicity assays cells were seeded in 96-well

microplates (Nunc, Denmark) at a density of 1£105 cells/
ml in 100 �l F12K medium containing 10% FBS. After 24 h
of cell attachment, plates were washed with 100�l/well
phosphate buVered saline (PBS) and the cells were treated
with increasing concentrations of each nanomaterial pre-
pared in either 5% or 0% FBS containing medium for 24 h.
Six replicate wells were used for each control and test con-
centration per microplate. Cytotoxicity was assessed using
Wve assays as outlined below.

2.5. Alamar blue, neutral red, coomassie blue assays

The AB, NR and CB assays were conducted subse-
quently on the same set of plates. The AB assay was per-
formed Wrst. The bioassay was carried out according to
manufacturer’s instructions. BrieXy, control media or test
exposures were removed; the cells were rinsed with PBS and
100�l of an AB/NR medium (5% [v/v] solution of AB and
1.25% [v/v] of NR dye) prepared in fresh media (without
FBS or supplements) were added to each well. Following
3 h incubation, AB Xuorescence was quantiWed at the
respective excitation and emission wavelength of 540 and
595 nm. Wells containing medium and AB without cells
were used as blanks. The mean Xuorescent units for the six
replicate cultures were calculated for each exposure treat-
ment and the mean blank value was subtracted from these.
Viability and protein determination of the cells following
exposure to each chemical were then subsequently investi-
gated using the NR and CB assays according to Liebsch
and Spielmann (1995) with the modiWcation of Coomassie
Brilliant Blue dye being employed in place of Kenacid Blue
R dye.

2.6. MTT assay

A second series of plates were set up for the MTT assay.
These plates were seeded and exposed identically to the Wrst
series of plates prepared for the AB, NR, and CB assays.
Following 24 h of nanomaterial exposure, control medium
or test exposures were removed (medium from each con-
trol/treatment was pooled and frozen at ¡80 °C for subse-
quent AK and IL-8 analysis), the cells were rinsed with PBS

and 100 �l of fresh medium (without FBS or supplements)
was added to each well. Ten microlitres of MTT (5 mg/ml)
prepared in PBS was then added to each well and the plates
were incubated for 3 h at 37 °C in a 5% CO2 humidiWed
incubator. After this incubation period the medium was
discarded, the cells were washed with 100 �l of PBS and
100 �l of DMSO was added to each well to extract the dye.
The plate was shaken at 240 rpm for 10 min and the absor-
bance was measured at 570 nm.

2.7. Measurement of Adenylate Kinase (AK) release

The bioluminescent ToxiLight™ kit (Cambrex BioSci-
ence Wokingham Ltd., UK) was employed to measure the
concentration of AK present in the supernatants collected
as described above. This kit quantitatively measures the
release of AK from damaged cells and the assay was per-
formed according to manufacturer’s instructions.

2.8. Measurement of Interleukin-8 (IL-8)

Medium was assayed in triplicate for IL-8 using an
enzyme-linked immunosorbent assay (ELISA) cytoset kit
according to manufacturer’s instructions (Biosource Inter-
national, Camarillo, CA).

2.9. Light and transmission electron microscopy

Exposures were conducted in 35 mm petri dishes (Nunc,
Denmark) that were seeded with 2 ml of cell suspension
prepared in 10%-F12K at a density of 2£ 105 cells/ml. Cells
were allowed to attach for 24 h and were then exposed to
selected concentrations of SWCNT (0, 400, 800 �g/ml) and
quartz (0, 400, 800 �g/ml) prepared in both 5%-F12K and
0%-F12K medium for 24 h. Following exposures, cells were
washed with 0.1 M phosphate buVer and then Wxed in 2.5%
glutaraldehyde in 0.1 M phosphate buVer for 1 h, post-Wxed
in 1% OsO4 in 0.1 M phosphate buVer for a further hour,
dehydrated in ascending grades of ethanol and subse-
quently embedded in epoxy resin. Light microscopy sec-
tions (1 �m) were cut en face with a glass knife, stained with
1% toluidine blue and mounted with DPX. These sections
were examined using a Nikon Eclipse E600 microscope and
images were recorded using a Spot RT digital camera. Ultra
thin sections (80 nm) were cut en face with a diamond knife,
stained with uranyl acetate and lead citrate and examined
using an FEI Tecnai G2 TEM.

2.10. Statistics

Fluorescence as Xuorescent units (FUs), luminescence as
relative light units (RLUs) and absorbance were all quanti-
Wed using a microplate reader (TECAN GENios, Grödig,
Austria). Experiments were conducted in at least triplicate
(three independent experiments). Test treatments for each
assay (AB, NR, MTT, CB) were expressed as percentage of
the unexposed control§ standard deviation (SD). Control
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values were set at 100%. For the AK assay, cytotoxicity was
expressed as mean percentage increase relative to the unex-
posed control§SD. Control values were set at 0% cytotox-
icity. Cytotoxicity data (where appropriate) was Wtted to a
sigmoidal curve and a four parameter logistic model used
to calculate the 50% EVective Concentration (EC50), which
was the concentration of nanomaterial which caused a 50%
inhibition in comparison to untreated controls. The EC50
values are reported §95% ConWdence Intervals (§95% CI).
This analysis was performed using XlWt3™ a curve Wtting
add-in for Microsoft® Excel (ID Business Solutions, UK).
For cytokine analysis the IL-8 concentration (pg/ml) for
each treatment was calculated from a standard curve con-
ducted in parallel with test samples. CoeYcient of variation
(CV) for the controls of each test was calculated to ascer-
tain reproducibility. Statistical analyses were carried out
using one-way analyses of variance (ANOVA) followed by
Dunnett’s multiple comparison test.

3. Results

3.1. Initial characterisation of SWCNT

The TEM images obtained for HiPco® nanotubes (as
purchased) tested in this study are shown in Fig. 1. Fig. 1A
shows an area of what is termed high density tubes, bun-
dles/aggregates of varying lengths and diameters can be
clearly seen which is typical of raw HiPco® SWCNT. In
Fig 1B, individual SWCNT and remnant catalytic iron par-
ticles resultant from the fabrication process are evident.

3.2. Alamar blue assay

SigniWcant cytotoxicity (P 60.05) was recorded at 400
and 800 �g/ml SWCNT tested in the presence of serum for
the AB assay, with approximately 33% and 53% inhibition
demonstrated respectively in comparison to untreated con-
trols. The EC50§95% CI value was determined as 744§
91 �g/ml SWCNT for serum exposures. In serum free media
signiWcant cytotoxicity was again recorded at 400 and

800 �g/ml SWCNT where a 42% and 51% inhibition in AB
Xuorescence was recorded in comparison to unexposed
controls (Fig. 2A). In the absence of serum, the EC50 was
found to be >800 �g/ml SWCNT.

Following exposure of the A549 cells to quartz in serum
containing medium signiWcant cytotoxicity was observed at

Fig. 1. TEM of HiPco® SWCNT (as purchased) (A) 20,000£ magniWcation showing large aggregates (arrows) and high density tubes (B) 200,000£ magni-
Wcation showing remnant catalytic iron particles (arrows).

Fig. 2. Cytotoxicity of SWCNT (A) and quartz (B) to A549 cells after 24 h
exposure determined by the AB assay. Exposures were conducted in
media containing 5% serum (�), and serum free media (�). Data are
expressed as percent of control mean § SD of three independent experi-
ments. ¤ Denotes a signiWcant diVerence from the control (P 6 0.05). CV
for the controls ranged from 1.7% to 28.7% in serum containing media
and 2.7–22.9% in serum free media for the SWCNT and 2.1–4.7% in serum
containing media and in 2.9–3.7% in serum free media for quartz.
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200 and 400�g/ml, which resulted in an 18% and 23%
inhibitory eVect respectively in comparison to controls. At
the top concentration tested (800�g/ml), however, only a
2% inhibition was recorded in comparison to untreated
controls, hence no EC50 value was derived for this exposure.
For quartz exposures in the absence of serum signiWcant
cytotoxicity was observed at 25, 50, 100, 400, and 800 �g/ml.
Approximately 50% and 90% inhibition was recorded in
comparison to untreated controls at 400 and 800 �g/ml
quartz respectively (Fig. 2B). An EC50 of 397§159 �g/ml
for quartz exposure without serum was determined.

3.3. Coomassie blue assay

SWCNT in serum containing medium produced signiW-
cant cytotoxicity at concentrations of 400 (25% inhibition)
and 800 (32% inhibition) �g/ml, as elucidated using the CB
assay. In the absence of serum, signiWcant cytotoxicity was
also observed at these concentrations (Fig. 3A). No EC50
values were determined for the CB assay for both serum
and serum free exposures, as maximum cytotoxicity deter-
mined in both instances was less than 50%.

For quartz exposures in serum containing media, signiW-
cant cytotoxicity was determined at 200, 400 and 800 �g/ml,
with approximately 18%, 30% and 34% inhibition com-
pared to untreated controls recorded respectively. There-
fore the EC50 value was greater than the top concentration
tested. In the absence of serum, a slight but non-signiWcant
increase in CB absorbance over controls was recorded for
concentrations up to and including 200 �g/ml quartz. Sig-
niWcant cytotoxicity was recorded at 400 (22% inhibition)
and 800 (52% inhibition) �g/ml quartz (Fig. 3B). An EC50
of 753§ 187�g/ml for quartz exposure without serum was
determined with this assay.

3.4. MTT assay

For the MTT assay, exposure in serum containing media
resulted in signiWcant cytotoxicity from 12.5 �g/ml SWCNT
upwards, and a maximum of 32% inhibition was recorded
at 800 �g/ml SWCNT in comparison to the control. For
exposures in the absence of serum, signiWcant cytotoxicity
was recorded from 3.125 �g/ml SWCNT upwards and
800 �g/ml SWCNT resulted in approximately 45% inhibi-
tion in comparison to the control (Fig. 4A). No EC50 values
were, therefore, determined for the MTT assay for both
serum and serum free exposures to SWCNT, as maximum
cytotoxicity determined in both instances was less than
50%.

No signiWcant cytotoxicity was determined following
24 h exposure of the A549 cells to quartz in serum contain-
ing media. For the majority of the concentrations tested
(except 400 �g/ml) a stimulatory or hormetic response was
recorded but none of these were found to be statistically
signiWcant when compared to untreated controls. In the
absence of serum in the test medium, signiWcant cytotoxic-
ity was determined at 100, 400 and 800 �g/ml quartz, with
approximately 80% inhibition recorded at the top concen-
tration (Fig. 4B). An EC50 of 465§ 130�g/ml for quartz
exposure without serum was determined with the MTT
assay.

3.5. Light and transmission electron microscopy

3.5.1. Cellular uptake of SWCNT
No evidence of SWCNT internalisation (either in serum

containing or serum free media) was found for this lung
epithelium model. Due to the crystalline nature of quartz it
was not possible to section the exposed cell cultures for
subsequent TEM imaging.

3.5.2. Cellular morphology post exposure to SWCNT
Light micrographs of the A549 cells following exposure

to selected concentrations of SWCNT and quartz in serum
containing medium are presented in Fig. 5. Control A549
cells were of typical cuboidal shape, indicative of type II
pulmonary morphology (Fig. 5A). Cells exposed to SWCNT
exhibited altered morphology and necrotic and apoptotic
cells were observed (Fig. 5B and C). Exposure to the positive

Fig. 3. Cytotoxicity of SWCNT (A) and quartz (B) to A549 cells after 24 h
exposure determined by the CB assay. Exposures were conducted in media
containing 5% serum (�), and serum free media (�). Data are expressed
as percent of control mean § SD of three independent experiments.
¤ Denotes a signiWcant diVerence from the control (P 6 0.05). CV for the
controls ranged from 6.1% to 14.5% in serum containing media and 3.6–
25.2% in serum free media for the SWCNT and 4.4–6.3% in serum con-
taining media and in 13.2–20.8% in serum free media for quartz.
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control quartz (800 �g/ml) resulted in extensive cell mortal-
ity as evidenced by the cell debris seen in Fig. 5D.

Morphological features such as lamellar body structures,
microvilli, tonoWlaments, desmosome junctions, character-
istic of alveolar epithelial type II (AE2) cells were observed
in TEM images of control cell cultures (Fig. 6). Following
exposure to 400 �g/ml SWCNT, an increase in lamellar
bodies was recorded (Fig. 7A–C); multivesicular bodies
were also observed (Fig. 7B) and the presence of extracellu-
lar (excreted) lamellar bodies was noted (Fig. 7C). Follow-
ing exposure to the highest test concentration of SWCNT,
we observed substantially more lamellar bodies when com-
pared to untreated controls, although this observation was
not quantiWed (Fig. 7D–E). A reduction in microvilli and
an increase in lipid droplet numbers were also evident com-
pared to control cultures. Multivesicular bodies were also
observed at the cell surface (Fig. 7F).

One of the main problems encountered in the investiga-
tion of SWCNT cytotoxicity is the tendency of these nano-
particles to aggregate into large bundles. A phase contrast

micrograph of A549 cells following 24 h exposure to 800 �g/
ml SWCNT reveals large aggregates on the cell surface
(Fig. 8). These aggregates remained adhered to the cell sur-
face even after several washes with PBS.

4. Discussion

This paper describes a comprehensive in vitro cytotoxic-
ity assessment of SWCNT on A549 cells, a human lung car-
cinoma epithelial cell line. Quartz was tested in parallel
exposures to provide a benchmark of particle toxicity.
Parameters evaluated in this study following 24 h exposure
to both materials, included the metabolic, lysosomal, and
mitochondrial activities, in addition to total protein con-
tent, cell membrane integrity and inXammation response.
The present study also employed TEM to characterise the
samples pre exposure, to investigate if the SWCNT were
internalised by these lung cells and to examine for any
ultrastructural changes in cell morphology post exposure.

The pathogenicity of quartz has been well documented
both in vitro and in vivo pulmonary studies; hence, it is rou-
tinely employed as a positive control to benchmark particle
toxicity (Diabeté et al., 2002; Lam et al., 2004; Warheit et al.,
2004). In cytotoxicity tests with quartz (AB, NR, CB, MTT),
we observed marked diVerences between the toxicity elicited
in the presence and absence of serum. For all four endpoints,
the presence of serum had a substantial attenuation on the
cytotoxicity of quartz and the EC50 values in all assays were
found to be >800�g/ml quartz. In the absence of serum,
however, signiWcant cytotoxicity was demonstrated for all
endpoints and the rank order of endpoint sensitivity based
on calculated EC50 values was AB > NR > MTT > CB.
Quartz exposure in serum free media was also found to
induce a signiWcant release of AK at both 400 and 800�g/ml,
which was indicative of cell membrane damage at these con-
centrations (data not shown).

Cell cultures are routinely grown and tested in media
supplemented with various percentages of serum proteins
such as FBS. Gülden and Seibert (2005) have recently
reported that the bioavailability of chemicals in vitro can be
reduced due to partitioning into lipids and binding to
serum proteins. The ‘protective’ eVect of serum in silica tox-
icity has also been well documented (Emerson and Davis,
1983; Schimmelpfeng et al., 1992). Antonini and Reasor
(1994) demonstrated that coating of silica with a commer-
cially available bovine pulmonary surfactant aVorded
short-term protection against its toxicity when tested both
in vitro on rat alveolar macrophages and in vivo following
intratracheal instillation. Antonini et al. (1994) also demon-
strated that pretreatment of rats with amiodarone, a drug
that signiWcantly increases the concentration of total
phospholipid in whole lung resulted in reduced toxicity of
silica dust following subsequent intratracheal instillation.
We are currently investigating the eVect of increased expo-
sure time (e.g. 48, 72, 96 h) of the cells to both nanomateri-
als in order to establish if the protective eVect of the serum
diminishes over time.

Fig. 4. Cytotoxicity of SWCNT (A) and quartz (B) to A549 cells after 24 h
exposure determined by the MTT assay. Exposures were conducted in
media containing 5% serum (�), and serum free media (�). Data are
expressed as percent of control mean § SD of four (SWCNT) or three
(quartz) independent experiments. ¤ Denotes a signiWcant diVerence from
the control (P 6 0.05). CV for the controls ranged from 3.8% to 12.1% in
serum containing media and 0.3–23.1% in serum free media for the
SWCNT and 5.5–15.3% in serum containing media and in 4.6–9.1% in
serum free media for quartz.
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From the results obtained for quartz, it can be con-
cluded that cell metabolism (AB assay), and mitochondrial
activity (MTT) are negatively impacted at concentrations
lower than that required for cell detachment (CB). The AB
assay has also been previously employed to assess the cyto-
toxicity of SWCNT in human keratinocyte cells (Shvedova
et al., 2003). Based on the EC50 values for quartz and the
coeYcient of variation (CV) values for the controls, this
assay was found to be the most sensitive and reproducible
(lowest CV values) endpoint employed in the current study.

While conducting the cytotoxicity assays it was observed
that the SWCNT were interacting with some of the colori-
metric and Xuorescent dyes used in the toxicity assessment,
resulting in unexpected absorption/Xuorescence data. The
most obvious interference was found with the NR assay as
widely Xuctuating results were obtained with this endpoint.
Monteiro-Riviere and Inman (2006) have also reported
that this viability dye was adsorbed onto carbon and thus
found interference with the absorption spectra of the dye
resulting in false readings. The adsorbing properties of the
carbon nanotubes were also suspected to interfere with the
Adenylate Kinase and cytokine assays in the present study
hence no results for the NR, AK or IL-8 assay for either the
SWCNTs or the positive control quartz were presented.
Monteiro-Riviere and Inman (2006) also observed interfer-
ence with the cytokine assay and postulated that the tested
carbon black may have adsorbed the IL-8 released by the

cells in their study. Another recent study has also reported
SWCNT interference with the MTT assay (Wörle-Knirsch
et al., 2006). Hurt et al. (2006) recently addressed this con-
founding issue and advised caution when performing even
established toxicity assays in the presence of signiWcant
quantities of Wne carbon.

Results presented for the cytotoxicity tests (AB, CB,
MTT) revealed the SWCNT to have very low acute toxicity
to the A549 cells, as all but one of the reported 24 h EC50
values exceeded the top concentration tested (800 �g/ml).
The AB assay was found to be the most sensitive endpoint
as the greatest cytotoxicity (approximately 50% in both 5%
serum and serum free media) was recorded at the top con-
centration of SWCNT. However, given the recent reports
of interference of the various dye markers and until such
time that we can establish/overcome the adsorptive inter-
ferences of the SWCNT on the employed dye markers, it is
not possible to draw any Wrm conclusions from these toxic-
ity results. We are therefore currently conducting a full
spectroscopic study, namely Raman, UV–vis absorption
and Xuorescence spectroscopy, to assess the interactions of
the SWCNT and the various dye markers employed in this
study. It is also worth noting that transformed cell lines are
typically less resistant to toxic eVects than other cells
derived from normal tissues. We are therefore also cur-
rently using normal lung cell lines e.g. HFL and BEAS-2B
in our on-going toxicity studies.

Fig. 5. Light micrographs of A549 (A) control cells showing nucleus (Nuc) and cells in metaphase (M) and lamellar bodies (LB), and microvilli (Mv), (B)
cells exposed to 400 �g/ml SWCNT with serum showing nucleus (Nuc) and necrotic cells (Nec), and lamellar bodies (LB) (C) cells exposed to 800 �g/ml
SWCNT with serum showing nucleus (Nuc) and apoptotic cells (Apop) and lamellar bodies (LB) (D) cells exposed to 800 �g/ml quartz showing cell debris.
Mag 400£.
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Fig. 6. TEM of A549 control cells showing (A) nucleus (Nuc), lamellar bodies (LB), lipid droplets (L) and extensive microvilli (Mv), (B) intracellular
microvilli (Mv), (C) mitochondria (Mt), lamellar bodies (LB), tonoWlaments (TF) and rough endoplasmic reticulum (RER), and (D) desmosome junction
(DJ) and free ribosomes (Rb).

Fig. 7. TEM of A549 cells treated with 400 �g/ml SWCNT (A–C) showing (A) nucleus (Nuc), lamellar bodies (LB), and microvilli (Mv), (B) lamellar bod-
ies (LB) and multivesicular body (MVB), (C) lamellar bodies (LB) and extracellular lamellar bodies (ELB) and A549 cells treated with 800 �g/ml SWCNT
(D–F) showing (D) nucleus (Nuc), lamellar bodies (LB), and reduced microvilli (Mv), and an aggregation of lamellar bodies (ALB), (E) lamellar bodies
(LB) and an accumulation of lipid droplets (L), (F) a multivesicular body (MVB) associated with the plasma membrane. A549 cells were exposed to
SWCNTs either with serum (A, B and D, E) or without serum (C and F).
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One of the main problems in the toxicity evaluation of
SWCNT is the propensity of the nanotubes to agglomer-
ate owing to substantial van der Waals attractions. As a
means to reduce the formation of such bundles, research-
ers have employed numerous carrier solvents including
media with varying FBS percentages, serum and organic
synthetic surfactants. The use of diVerent dispersal sol-
vents will obviously inXuence the concentration of
SWCNT available to the cell and Smart et al. (2006) have
recently proposed that discrepancies in toxicity and bio-
compatibility data may be attributed to the diVerent dis-
persion methods employed to date. In this study we chose
not to employ synthetic surfactants, but rather to investi-
gate the interactions between the FBS routinely used
for the culturing and testing of the A549 cells and the
SWCNT. Test exposures were therefore conducted both
in serum containing (5%) and serum-free medium. Visual
observation of the SWCNT prior to cell exposure revealed
that nanotubes appeared to solubilise (disaggregate)
more readily in serum containing medium and indicated
that the presence of serum had a dispersion eVect on the
SWCNT. Monteiro-Riviere et al. (2005) found that diVer-
ent synthetic surfactants showed increased dispersion and
reduced aggregation of MWCNT, but they also noted
that the presence of surfactant did not alter the cytotoxic-
ity of the MWCNT to a human keratinocyte cell line
(HEK) as determined by the NR assay. In this study we
found that in general greater toxicity was demonstrated
with the SWCNT in the absence of serum (Figs. 3A and
4A). In parallel studies to the in vitro cytotoxicity assess-
ment we also employed spectroscopic techniques to assess
the interaction of the SWCNT and the various media

components and we found that there was signiWcant inter-
action between the SWCNT and FBS (Casey et al., in
press).

As signiWcant cytotoxicity was demonstrated at 400 and
800 �g/ml of SWCNT with the AB, CB and MTT assays,
cells were subsequently exposed to these concentrations for
24 h, and light and transmission electron microscopy were
employed to assess for nanomaterial interaction/localisa-
tion within the A549 cells and for evidence of dose related
morphological changes. Cells were also exposed to the same
concentrations of quartz without serum and light micros-
copy sections conWrmed the extensive cell death demon-
strated in the viability assays. We found no evidence in this
study that this lung epithelium model internalized the
SWCNT. Similarly, whilst Shvedova et al. (2003) reported
ultrastructural changes in cell morphology of HaCaT cells,
TEM imaging did not reveal intracellular localization of
these particles. Other studies have shown that internaliza-
tion of various nanoparticles can occur. Wörle-Knirsch
et al. (2006) recently reported that SWCNT could be found
as bundles of thousands inside A549 cells and postulated
that they were mostly encapsulated in endosomes and infre-
quently found inside mitochondria. Monteiro-Riviere et al.
(2005) demonstrated MWCNT were primarily located
within the intracytoplasmic vacuoles of human epidermal
keratincotyes (HEKs) and demonstrated diVerent mor-
phology between control and those exposed to MWCNT.
More recently, the same group (Rouse et al., 2006) has
reported that fullerene-based amino acid nanoparticles can
also localize to intracytoplasmic vacuoles in HEK cells. The
internalization of ultraWne titanium dioxide by A549 cells
has also been reported (Stearns et al., 2001). In the concur-
rent spectroscopic study performed by our group (Casey
et al., in press) Raman and Xuorescence emission analysis
indicated that no debundling or reduction in aggregation
state occurred upon the dispersion of SWCNT in the media
over the concentration range studied. Typically these aggre-
gates can be of the order of microns therefore reducing the
likelihood of internalization.

While we did not Wnd any evidence of SWCNT internal-
ization in the A549 cells, we did observe ultrastructural
changes in the cell morphology following SWCNT expo-
sure. It is worth noting however, that we could not distin-
guish any obvious qualitative morphological diVerences
between those exposures conducted with and without serum.
The A549 cells have retained the main properties of AE2
cells, i.e. pulmonary surfactant secretory functions (Lieber
et al., 1976; Fehrenbach, 2001) and within these cells
the lamellar bodies are recognised as storage vessels from
which surfactant is released into the alveolus (Askin and
Kuhn, 1971). After secretion, alveolar forms of surfactant
include these lamellar bodies, highly organised structures
termed tubular myelin, and monolayered and multilayered,
phospholipid-rich sheets and vesicles (Whitsett and
Weaver, 2002). While the principal function of this pulmo-
nary surfactant is the regulation of surface tension in the
lungs (Nicholas, 1996), it is also postulated that increased

Fig. 8. Phase contrast micrograph (200£) of A549 cells following 24 h
exposure to 800 �g/ml SWCNT with 5% serum showing aggregates
(arrows) on cell surface. These aggregates were still observed on the cell
surface after several washes with PBS.
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production of this surfactant may play a role in defending
the lungs against chemical and particulate damage (Hook,
1991, 1993).

Following exposure to both 400 and 800 �g/ml SWCNT,
an increase in lamellar bodies compared to untreated con-
trols was observed within exposed cells. In addition, the
presence of extracellular lamellar bodies, which appeared to
have exocytosed their contents, was recorded at 400 �g/ml
SWCNT (Fig. 7C). Multivesicular bodies were also observed
following cell exposure to both 400 and 800 �g/ml SWCNT.
We surmise that these vesicles were most likely the
phospholipid-rich multivesicular bodies as mentioned
above, which are involved in the surfactant synthesis and
recycling. Interestingly, a very similar plasma membrane
projection as that identiWed by us in Fig. 7F was shown by
Stearns et al. (2001), in an electron micrograph following
exposure of A549 cells to 40 �g/ml ultraWne titanium diox-
ide. Stearns et al. (2001) also reported that aggregates of
TiO2, which entered the A549 cells by ingestion, were later
found in membrane-bound vacuoles and enmeshed within
lamellar bodies. Recently, in an in vivo study, Shvedova
et al. (2005) also observed increased numbers of AE2 cells
expressing cytoplasmic lamellar bodies in TEM sections of
mouse lung following SWCNT exposure via pharyngeal
aspiration.

We therefore hypothesize that the increased presence of
these lamellar bodies and the concurrent surfactant secre-
tion is a protective response of the lung cells to reduce the
cytotoxic eVects of SWCNT. Hook (1993) postulated that
one possible mechanism that might account for the protec-
tive eVects is the quenching of free radicals by the unsatu-
rated phospholipids of pulmonary surfactant. This theory
seems quite plausible considering, as we have previously dis-
cussed, surface modiWcation of silica with phospholipids
can markedly reduce its toxicity. Previous research has also
shown that direct mechanical stretching of the AE2 cells can
trigger the release of surfactant (Wirtz and Dobbs, 1990). As
can be seen in Fig. 8, SWCNT were found to aggregate on
the cell surface and remained attached even after several
washes with PBS, hence another possible stimulus for this
enhanced secretion of surfactant may be due to the physical
stress of the SWCNT aggregates on the cell surface.

In conclusion, exposure of A549 cells to a wide dose
range of SWCNT (1.56–800 �g/ml) for 24 h revealed the
SWCNT to have low acute toxicity. In this study we found
that in general, greater SWCNT toxicity was observed in
the absence of serum, although this trend was not as
marked as that observed for quartz exposures. The
SWCNT were found to interfere with a number of the dyes
used in the cytotoxicity assessment and we are currently
conducting a comprehensive spectroscopic study to further
investigate these interactions. Of the multiple cytotoxicity
assays used, the AB assay was found to be the most sensi-
tive. TEM studies conWrmed that there was no intracellular
localization of SWCNT in A549 cells following 24 h expo-
sure, however, morphological alterations in exposed cells
observed in this study revealed that there were increased

numbers of surfactant storing lamellar bodies. We therefore
surmise that the increased presence of these lamellar bodies
was a defensive response of these lung cells to SWCNT
exposure and conclude that the protective function of the
pulmonary surfactant following nanoparticle exposure
warrants further investigation.
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