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Abstract—Experimental evidences show that: 1) the release sites
from a single axon have variable release probabilities, even when
the axon contacts the same postsynaptic neuron; 2) this variabil-
ity in the release probability implies a compartmentalization at
the level of the presynaptic terminals of the neuronal processing;
3) the specificity of the presynaptic terminal processing is driven
by and reflects the complex biophysical mechanisms activated at
the axon terminals when a spike is fired in response to a stimu-
lus. Stemming from these experimental evidences, we propose a
communication engineering model for capturing the behavior of
biological neurons. Specifically, by adopting a stochastic approach,
the presynaptic terminals are modeled as a dynamic array of
transmitters, where each transmitter models the processing speci-
ficity of a presynaptic terminal. In particular, we first show that
the unique and specific processing of a presynaptic terminal can
be reconducted to the cascade of a frequency selector and an
amplitude modulator. Then, we characterize the propagation of
the presynaptic-filtered signal through the synaptic cleft, and we
derive the delay along with the channel attenuation as a function
of the distance between the communicating neurons. Finally, the
theoretical analysis is validated through numerical simulation.

Index Terms—Neuro-spike communications, neurons, intra-
body nanonetworks.

I. INTRODUCTION

R ECENT developments in nanotechnology and communi-
cation engineering are enabling the realization of a new

generation of nanoscale devices implantable inside the human
body [1], [2]. When interconnected in a network, referred to as
Intrabody nanonetwork [3], [4], these miniaturized devices or
nanomachines are able to perform complex tasks, by overcom-
ing their individual limitations.

Recently, intrabody nanonetworks have been proposed for
monitoring the human nervous system [5]–[7] by exploiting
the dimensional similarity of the nanomachines with the ner-
vous biological structures. The aim is to develop radically
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new medical diagnosis and treatment techniques. However, sev-
eral questions and challenges arise to design a fully functional
intrabody nanonetwork deployed inside the nervous system.
Certainly, the first step is to understand the physiological mech-
anisms underlying the neuronal activities with an engineering
perspective for mapping such mechanisms into communication
engineering system models [8]–[10].

The communication models available in the literature con-
sider the axon terminals1 acting solely as stochastic conveyers
of information through the synapses2 from a neuron, referred to
as presynaptic neuron, to a targeted neuron, referred to as post-
synaptic neuron. However, this model is too simplistic. Indeed,
a very large number of evidences from experimental studies
[11]–[15] conducted on biological neurons show a high com-
partmentalization at level of individual axon terminals of the
neuronal processes. This compartmentalization in turn implies
that the axon terminals act as unique dynamic signaling units,
whose effects on the transmitted signal from a presynaptic neu-
ron to a postsynaptic neuron, can vary enormously depending
on the activity history at either or both sides of the synapse [14].

Specifically, numerous experiments have shown that the pro-
cessing specificity of an axon terminal is a universal property
and potentially unique for each synaptic connection made by
a single axon [12], [14], [15]. In fact, it is determined by the
unique interaction between the pre- and the postsynaptic neu-
rons. More in detail, the axon-terminal-specific processing is
due to and reflects the complex biophysical mechanisms acti-
vated at the axon terminals by the electrical signals, known as
action potentials (APs) or spikes, fired in response to a stimulus.
So, when an AP reaches different axon terminals, the axon-
terminal-specific processing determines different patterns of
neurotransmitter release. As a consequence, a presynaptic neu-
ron simultaneously transmits different signals to a postsynaptic
neuron, and not just a single signal. Collectively, knowing
which axon terminal releases neurotransmitters provides more
information than simply knowing that a neuron has fired [12],
[14], [15].

Stemming from these experimental evidences, it is clear that
an effective neuronal communication model should take into
account the processing dynamics of the axon-terminals, in the
following referred to as presynaptic terminals3. Hence, in this
paper, a communication engineering model is designed for cap-
turing the behavior of biological neurons, by accounting for

1The axon terminals, or synaptic boutons, are the distal terminations of the
branches of an axon, as illustrated in Fig. 1.

2The synapses are the junctions through which the neurons signal to each
other.

3For a formal definition of presynaptic terminal please refer to Section II.
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Fig. 1. Biophysical communication between a presynaptic and a postsynaptic
neuron.

the specificity of the processing performed by the presynaptic
terminals4.

Specifically, we propose to model the presynaptic terminals
of a neuron as an array of transmitters, where each transmitter
models the local processing performed by the correspond-
ing presynaptic terminal. We conduct the analysis through a
stochastic approach, since the synaptic transmission process
is inherently stochastic. More in detail, we first analytically
characterize the stochastic filtering of a spike train performed
by an arbitrary presynaptic terminal, by showing that the
unique and specific processing of a presynaptic terminal can
be re-conducted to the cascade of a frequency selector and an
amplitude modulator. Then, we characterize the propagation
of the presynaptic-filtered signal within the synaptic cleft, by
deriving the signal delay as well as the signal attenuation as a
function of the distance between the presynaptic transmitter and
the postsynaptic receiver.

Finally, the theoretical analysis is validated through numer-
ical simulations, by using a realistic experimentally recon-
structed neuron morphology of a mouse, illustrated in Figure 3

The rest of the paper is organized as follows. In Section II,
we design the communication engineering model to account for
the complex local processing performed by the presynaptic ter-
minals. In Section III, we validate the theoretical analysis. In
Section IV, we discuss the derived results, by providing insights
on their applicability. Finally, Section V concludes the paper,
and some proofs are gathered in the appendix.

II. PRESYNAPTIC TERMINALS: SYSTEM-THEORETICAL

MODEL

In this section, we propose a systems-theoretic communica-
tion engineering model for capturing the behavior of biological
neurons, by accounting for the specificity of the presynaptic-
terminal processing. To this aim, we preliminary describe
in Section II-A the biophysical mechanisms underlying the
compartmentalization at level of the axon terminals of the
neuronal processes. Then, in Section II-B we characterize the
stochastic filtering performed by each presynaptic terminal.

4The preliminary version of this work was presented at ACM International
Conference on Nanoscale Computing and Communication (ACM NANOCOM
2015) [16].

Finally, in Section II-C, we characterize the propagation of the
presynaptic-filtered signal within the synaptic cleft.

A. Biophysics of the Axon-Terminal Processing

As mentioned before, experimental studies conducted on
biological neurons show a high compartmentalization at level
of individual axon terminals of the neuronal processes. This
compartmentalization implies that the axon terminals act as
independent and dynamic signaling units.

The specificity of the axon-terminal processing is driven by
and reflects the complex biophysical mechanisms underlying
the release of neurotransmitter-filled vesicles into the synap-
tic cleft in response to a stimulus. Such mechanisms, that in
turn are driven by and reflect the activity history at either
or both sides of the synapse [12], [14], [15], have yet to be
fully identified and understood. However, experimental studies
have revealed that the release of neurotransmitters in response
to an AP at a given release site, i.e., at a specialized region
of the plasma membrane at which specific proteins involved
in the release process are localized, is an extremely com-
plex phenomenon controlled by the wealth and complexity of
the protein-protein and protein-lipid interactions. Furthermore,
such a complex can vary enormously at the different terminals
of an axon under the same conditions [12], [13]. Thus, release
sites from a single axon can have different release probabilities,
even when the axon contacts the same postsynaptic neuron. The
experiments also shown that the release probability is very sim-
ilar for axon terminals contacting the same dendritic branch of
a certain postsynaptic neuron, indicating that the release prob-
ability is branch-specific. Specifically, the release probability
is not randomly distributed among the axon terminals, but it is
rather segregated at the level of individual dendrites, since it
reflects the non-uniformity of the dendritic activities [13].

The aforementioned findings justify the following definition,
that will be used through the paper.

Definition 1: A presynaptic terminal5 denotes a subset of
axon terminals characterized by homogeneous release proba-
bility.

B. Presynaptic Terminal Filtering

As previously described and according to experimental evi-
dences, each presynaptic terminal filters independently and
in a distinguishing manner the incoming AP sequence. This
phenomenon is a consequence of the variations observed in
the release probability in different presynaptic terminals, and
lead us to propose the systems-theoretic communication model
shown in Fig. 26. According to this model, the set of the presy-
naptic terminals is modeled as an array of transmitters, where
each transmitter models the specificity of the stochastic pro-
cessing performed by a presynaptic terminal. In particular, in

5Although presynaptic terminal and axon terminal are generally used as syn-
onyms in literature, in the following we adopt Definition 1 to preserve the
intuitive meaning evoked by presynaptic terminal.

6We note that Figure 2 depicts an unique synaptic cleft for the sake of clarity,
and the results derived through the paper do not rely on any assumption about
a shared molecular channel.
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Fig. 2. Transmitter model for the presynaptic terminals.

Proposition 1 and Corollary 1, we prove that such processing
can be re-conducted to the cascade of a frequency selector and
an amplitude modulator.

The number of the presynaptic terminals and the number
of axon terminals constituting a presynaptic terminal depends
on the neuron physiology [12], [13]. In the following, with-

out loss of generality, we denote with T
�= {1, 2, . . . , T } the set

of distinct presynaptic terminals, whose cardinality is |T| = T ,
and with ni the number of axon terminals constituting the
i-th presynaptic terminal, with i ∈ T. In the following, stem-
ming from these definitions, we characterize the input-output
relationship of each presynaptic terminal.

The AP train v(t) traveling along the axon of a presynaptic
neuron is modeled as a non-homogeneous Poisson impulse pro-
cess, since this model has been shown to effectively describe
the neuron trial-to-trial variability [17]. Specifically, v(t) is
equal to:

v(t) =
N (t)∑
j=1

δ(t − t j ). (1)

In (1), t j is the arbitrary spike arrival time, and N (t) is a non-
homogeneous Poisson process whose rate λ(t) is a function of
the time, hence E[N (t)] = ∫ t

0 λ(u)du.
Neurotransmitters are released in the form of packets, quanta.

A quantum corresponds to the content of a synaptic vesicle [18]
that instantaneously appears in the synaptic cleft. The ideal-
ization of the vesicle discharge into the cleft as a point source
situated on the presynaptic membrane is a reasonable approx-
imation, since the pore radius though which neurotransmitters
are released is negligibly small in comparison with the radius
of the synaptic cleft [19].

By definition of presynaptic terminal, it results that a presy-
naptic terminal release of neurotransmitters corresponds to the
neurotransmitter quanta discharged by its axon terminals. We
formalize this concept with the following definition:

Definition 2: Qi denotes the amount of neurotransmitters
possibly discharged by the i-th presynaptic terminal in response
to an arbitrary AP accounting for the quanta released by the
axon terminals constituting the i-th presynaptic terminal:

Qi =
ni∑

�=1

qi,� (2)

where qi,� is the neurotransmitter quantum discharged by the
�-th axon terminal of the i-th presynaptic terminal.

Remark 1: (2) agrees with experimental evidences. In fact,
due to the very small size of the axon terminals, each axon
terminal is assumed to include a single release site [12]. The
number of release sites can therefore be assumed to be equiv-
alent to the number ni of axon terminals, constituting the
arbitrary i-th presynaptic terminal.

According to experimental evidences [12], [13], the axon
terminals constituting the i-th presynaptic terminal are char-
acterized by homogeneous physical and chemical properties.
Hence, it is reasonable to assume qi,� = qi ,∀� ∈ {1, 2, . . . , ni },
and (2) can be re-write as follows:

Qi = ni qi (3)

where qi accounts for the type of neurotransmitters7 released
by the i-th presynaptic terminal. Hence, our model allows
each presynaptic terminal to possibly discharge also differ-
ent types of neurotransmitters, in agreement with neuroscience
experiments [12], [14], [15].

Definition 3: Preli (t) denotes the release probability of the
i-th presynaptic terminal, whose value is determined by the
complex interactions between pre- and postsynaptic neurons.

Proposition 1: The signal transmitted by the i-th presy-
naptic terminal, stimulated by the spike train v(t), is the
non-homogenous Poisson impulse process sv

i (t):

sv
i (t) = Qi

Ni (t)∑
j=1

δ(t − t j ), (4)

whose expected value is given by

E[sv
i (t)] = Qi λi (t) = Qi Preli (t)λ(t), (5)

where Qi is given by (2) or equivalently by (3) and λi (t) is the
rate of the non-homogenous Poisson process Ni (t) represent-
ing the number of releases of the i-th presynaptic terminal until
time t :

E[Ni (t)] =
∫ t

0
λi (u)du =

∫ t

0
Preli (u)λ(u)du. (6)

Proof: See Appendix A. �
sv

i (t) models the neurotransmitter release process at the
presynaptic membrane, i.e., it expresses the number of released
neurotransmitter molecules as a function of time.

7As an example [18], [19], qi = 4700 molecules are released when the
neurotransmitter is glutamate,whereas qi = 104 molecules are released when
the neurotransmitter is acetylcholine. It is worthwhile to note that the type of
neurotransmitter impact is not limited to the number of released molecules.
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Lemma 1: The probability that the i-th presynaptic terminal
emits a non-null signal sv

i (t) in response to a spike train v(t)
goes to zero when the release probability Preli (t) goes to zero,
regardless of the temporal pattern λ(t)8.

Proof: The proof follows directly from Proposition 1.
Specifically, when the release probability Preli (t) goes to zero,
regardless of the frequency pattern λ(t) of the incoming stimu-
lus v(t), sv

i (t) is null identically. In fact, by accounting for (5),
its variance (that coincides with the expected value, being sv

i (t)
a non-homogenous Poisson impulse process) and mean are null
identically. �

Remark 2: From Proposition 1 and Lemma 1 and in agree-
ment with experimental evidences [11]–[15], it results that the
i-th presynaptic terminal dynamically processes the incoming
burst of spikes through: i) its release probability Preli (t); ii) the
type and quantities of the released neurotransmitters Qi .

Corollary 1: A presynaptic terminal behaves as a two-
stage filter constituted by a frequency converter, controlled by
its released probability Preli (t), and an amplitude modulator,
controlled by Qi .

Proof: The proof follows directly from Proposition 1. In
fact, from (4) and (5), it results that a presynaptic terminal fil-
ters the incoming spike train by down-converting the incoming
rate through its release probability, i.e., it acts as a frequency
converter. Furthermore, a presynaptic terminal modulates the
frequency down-converted train in amplitude through Qi . �

The results of Proposition 1, Lemma 1 and Corollary 1 are
in agreement with experiments conducted in neuroscience.
Specifically, the proposed model is able to capture the
following observed neuronal phenomena [11]–[15]:

• For a given stimulus v(t), a presynaptic neuron emits
different (spatial variable) signals {sv

i (t)} through its dif-
ferent presynaptic terminals. Such signals {sv

i (t)} are
characterized by: i) different temporal (frequency) pat-
terns {λi (t)}i∈T ; ii) different amplitudes {Qi }i∈T ;

• A presynaptic terminal responds differently to stim-
uli with different temporal patterns {λ(t)}, even if the
presynaptic terminal does not change its properties, i.e.,
Preli (t) and Qi .

Although the molecular interactions underlying the afore-
mentioned neuronal phenomena have yet to be fully identified,
the wealth and complexity of the protein-protein and protein-
lipid interactions, that have been shown to control the release
of neurotransmitters, suggest many ways in which the neu-
rons may modulate the properties of the presynaptic terminals
to respond dynamically to different stimuli. In particular, it
is widely recognized that these molecular mechanisms are
determined by the unique interaction between the pre- and
the postsynaptic neurons. Thus, by modulating these biophys-
ical mechanisms, a pre- and a postsynaptic neurons tune the
release probabilities along with the type and the quantities
of neurotransmitters, determining so the way in which they

8In the following, in agreement with the neuroscience literature, we refer to
the rate λ(t) as the temporal (equivalently, frequency) pattern of the incoming
spike train v(t). Similarly, we refer to the rate λi (t) as the temporal (equiv-
alently, frequency) pattern of the neurotransmitter train released by the i-th
presynaptic terminal.

communicate. In this sense, we can state that the presynap-
tic terminals constitute a tunable, hence dynamical, transmitter
array, where the tuning is determined by the unique interaction
between the pre- and postsynaptic neurons. More in detail,
“tunable” refers to the experimental evidences according to
which changes in the release probability and in the type and
quantities of released neurotransmitters represent the main
mechanisms by which synaptic efficacy9 is modulated in neu-
ronal circuits [11]–[15].

Stemming from the above results and comments, we can dis-
cern that by tuning the aforementioned quantities a presynaptic
neuron: i) selects the postsynaptic neurons to communicate;
i i) determines the way it affects its selected postsynaptic neu-
rons. These concepts are illustrated and further investigated in
Section IV.

C. Transmission of the Presynaptic Signals

In this subsection, stemming from the above derived results,
we characterize the propagation of the signal filtered by the i-th
presynaptic terminal within the synaptic cleft. Furthermore, we
derive the delay as well as the attenuation a presynaptic signal
experiences during the propagation in the synaptic cleft, as a
function of the distance between the presynaptic transmitter and
the postsynaptic receiver.

Proposition 2: The signal sv
i (t) transmitted by the i-th presy-

naptic terminal creates a variation in the neurotransmitter con-
centration at the m-th postsynaptic dendrite located at a distance
dim from the i-th presynaptic terminal given by the following
pulse train:

ci,m(t, dim) =
Ni (t)∑
j=1

Qi

4πaDi (t − t j )
e
− d2

im
4Di (t−t j ) , (7)

where Di is the diffusion coefficient of the synaptic cleft for the
neurotransmitter type discharged by the considered presynaptic
terminal, and a denotes the width10 of the synaptic cleft.

Proof: See Appendix B �
sv

i (t) models the neurotransmitter release process at the
presynaptic membrane, whereas ci,m(t, dim) models the neuro-
transmitter concentration at distance dim from the presynaptic
membrane, by accounting for the propagation effects intro-
duced by the synaptic cleft. Hence, ci,m(t, dim) expresses the
number of neurotransmitter molecules for volume as a function
of time and distance.

Corollary 2: The concentration pulse train ci,m(t, dim)

generated by the i-th presynaptic terminal at the m-th
postsynaptic dendrite is a shot-noise process with rate
λi (t) = Preli (t)λ(t) and with synthetic characterization,

i.e., its mean μci,m (t, dim)
�= E[ci,m(t, dim)], covariance

function C OVci,m (t, τ, dim)
�= E[(ci,m(t, dim) − μci,m (t, dim))

(ci,m(t − τ, dim) − μci,m (t − τ, dim))] and variance

σ 2
ci,m

(t, dim)
�= E[(ci,m(t, dim) − μci,m (t, dim))2], given by:

9Synaptic efficacy is a basic concept in neuroscience denoting the capacity
of a presynaptic input to influence the postsynaptic output [20].

10In Section III, we provide the typical physiological quantities of these
parameters (a, Di , and so on) to validate the theoretical analysis.
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μci,m (t, dim) = Qi

∫ +∞

−∞
ki,m(t − τ, dim)λ(τ )dτ

= Qi ki,m(t, dim) ⊗ λi (t), (8)

C OVci,m (t, τ, dim) = Qi
[
ki,m(t, dim)ki,m(t − τ, dim)

] ⊗ λi (t)

= Qi

∫ +∞

−∞
ki,m(t − α, dim)ki,m(t − τ − α, dim)λi (α)dα,

(9)

σ 2
ci,m

(t, dim) = Qi

∫ +∞

−∞
k2

i,m(t − τ, dim)λi (τ )dτ

= Qi k2
i,m(t, dim) ⊗ λi (t), (10)

where ⊗ denotes the convolution operator and ki,m(t, dim)
�=

1
4πa Di t

e
− d2

im
4Di t .

Proof: See Appendix C �
From (8), (9) and (10), it results that the synthetic char-

acterization of ci,m(t, dim) is a function of both space and
time.

Remark 3: From Proposition 2 and Corollary 2 it results that
the spatiotemporal variation of the neurotransmitter concentra-
tion is a function of: i) the processing of the i-th presynaptic
terminal through Preli (t) and Qi ; ii) the processing of the chan-
nel (synaptic cleft) through ki,m(t, dim); iii) the relative position
of the receiver (a dendrite of a postsynaptic neuron) through the
distance dim .

From Proposition 2 and Corollary 2, it also results that the
rate of the concentration train generated by the i-th presynap-
tic terminal coincides with the rate λi (t) of the released spike
train11 sv

i (t). In other words, the temporal patterns of the presy-
naptic terminals are one-to-one mapped in the temporal patterns
of the neurotransmitter concentrations. Since, as experimen-
tally proved [21]–[26], the neuronal information is encoded
within the stimulus temporal pattern impinging on a postsy-
naptic neuron, this result implies that the information carried
on the postsynaptic neuron is dictated by the dynamic pro-
cessing of the presynaptic terminals. This is very important,
since it suggests that our model is able to reproduce an exper-
imentally observed phenomenon, i.e, the neuronal information
is encoded in the release patterns of the presynaptic terminals
[12], [14], [15].

Stemming from the above results, in the following we derive
two important metrics of the concentration pulse train, i.e., the
concentration delay and the concentration amplitude.

1. Concentration Delay:
Proposition 3: If the i-th presynaptic terminal releases Qi

neurotransmitters at time t j , the delay tim of the associated
concentration pulse needed to reach a postsynaptic membrane
located at a distance dim from the i-th presynaptic terminal is
given by:

tim = t j + d2
im

4Di
. (11)

11Clearly, the underlying ligand-binding mechanism at the postsynaptic neu-
ron determines the number of available receptors binding to the released
neurotransmitters.

Proof: See Appendix D �
From (11), it results that the concentration delay is inversely

proportional to the diffusion coefficient Di of the neurotrans-
mitter discharged by the i-th presynaptic terminal. Hence, the
higher the diffusion coefficient, the faster the neurotransmitters
will propagate. Moreover, the concentration delay is indepen-
dent of the quantity Qi of neurotransmitter released by the i-th
presynaptic terminal. As future work we plan to further inves-
tigate the delay metric, by also accounting for the propagation
time of the signal traveling on the axon along with the time
spent in the dendritic arbor at the postsynaptic side.

2. Concentration Amplitude: It is also worth to investi-
gate the variation of the concentration amplitude over space,
since it can be interpreted as the channel (synaptic cleft)
attenuation [27].

Proposition 4: If the i-th presynaptic terminal releases Qi

neurotransmitters in the synaptic cleft, the concentration pulse
is attenuated by the channel according to a quadratic low of the
distance d from the i-th presynaptic terminal:

ai (Qi , d) = π a e
d2

Qi
. (12)

Proof: The synaptic cleft attenuation can be determined
by evaluating the inverse of the amplitude of the concen-
tration pulse at the time instant at which the concentration
pulse reaches its maximum value [27], which we have previ-
ously determined in Proposition 3. Hence, by substituting (11)
in Qi ki,m(t − t j , dim) given in (17) (Appendix B), the proof
follows. �

It is interesting to note that, the higher the quantity of
released neurotransmitters Qi , the smaller the channel atten-
uation, as in the classical amplitude modulation. Moreover, we
note that the attenuation is independent of the neurotransmitter
diffusion coefficient, differently from the concentration delay.
Specifically, the diffusion coefficient of the synaptic cleft for the
type of neurotransmitters discharged by the i-the presynaptic
terminal does not affect the attenuation of the neurotransmitters
throughout the space.

Remark 4: As detailed discussed in Section IV, the long
term goal is to enable implantable nanomachines able to sub-
stitute damaged neurons. To this aim, the nanomachines have
to be able not only to sense the normal neuron activities but
also to mimic the behavior of biological neurons. Hence, the
knowledge of the variation of the neurotransmitters concentra-
tion amplitude over space along with the delay experienced is
crucial for achieving such a long term goal.

III. VALIDATION OF THE THEORETICAL RESULTS

In this section, we validate the theoretical results through
simulations. Specifically, we use the realistic experimentally
reconstructed mouse neuron morphology “NMO-07522” [28]
released by NeuroMorpho.org archive. The neuron morphology
is shown in Fig. 3. The considered neuron exhibits two differ-
ent presynaptic terminals, since, as described in Section II, it
is possible to individuate two different homogeneous release
zones contacting two different dendritic branches. The release
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Fig. 3. NMO-07522 neuron morphology with two presynaptic terminals.

Fig. 4. Frequency-conversion processing of the presynaptic terminals.

probabilities of the two presynaptic terminals are equal to
Prel1 = 0.3 and Prel2 = 0.7 according to [13].

In Fig. 4, we report the responses sv
1(t) and sv

2(t) of the
two presynaptic terminals when they are stimulated by a non-
homogeneous Poisson AP train v(t) with a sinusoidal rate
whose average values is 32Hz [29]. We note that the first
presynaptic terminal, characterized by a lower release proba-
bility, generates a signal sv

1(t) whose rate is lower than the one
of sv

2(t), generated by the second presynaptic terminal, char-
acterized by a larger release probability. These results are in
agreement with the theoretical analysis, since they confirm that
the presynaptic terminals perform frequency conversions of the
incoming spike train through their release probabilities.

In Fig. 5, we report the rate λ1(t) of the signal sv
1(t) emitted

by the first presynaptic terminal, by taking the same simula-
tion setting of the previous experiment. The results validate the
analysis developed in Section II, confirming that the rate of the
signal emitted by a presynaptic terminal is the modulated ver-
sion of the rate of the incoming spike train through its release
probability, i.e., λi (t) = Preli (t)λ(t).

In Fig. 6, we simulate the vesicle releases at both the con-
sidered presynaptic terminals over 5 trials for the stimulus train
v(t) used in the first experiment (Fig. 4). Specifically, the vesi-
cle releases are indicated by the blue dots. As expected, the

Fig. 5 Presynaptic terminal temporal pattern λi (t) vs time. Y-coordinate
expressed in releases per second.

Fig. 6. Vesicle releases over 5 trials for both the considered presynaptic
terminals. Release events shown with blue dots.

Fig. 7. Amplitude modulation processing of the presynaptic terminals. Y-
coordinate expressed in number of molecules.

number of vesicle releases for the first presynaptic terminal,
characterized by a lower release probability, is smaller than the
number of release for the second presynaptic terminal, for all
the considered trials. This variability in the neurotransmitter
releases confers the specificity to the presynaptic processing.

In Fig. 7, we simulate the response sv
1(t) of the first presynap-

tic terminal when it emits two different kind of neurotransmit-
ters, i.e., glutamate and acetylcholine. The number of molecules
is assumed equal to Q1 = 4700 and Q1 = 104, respectively, as
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Fig. 8. Concentration pulse train due to the first presynaptic terminal. Y-
coordinate expressed in molecules per nm3 (second plot).

reported in [18], [19]. In the first experiment, we assume that
the presynaptic terminal is stimulated by a non-homogeneous
Poisson AP train v(t) with a sinusoidal rate λ(t) whose aver-
age value is 32Hz. By comparing the first and the second
plot reported in Fig. 7, we note that for the acetylcholine the
presynaptic response has a larger strength, since the number of
emitted neurotransmitters is larger. These results are in agree-
ment with the theoretical analysis, since they confirm that the
presynaptic terminals perform an amplitude modulation of the
incoming spike train through the type and quantities of the
released neurotransmitters. In the second experiment, we stim-
ulate the first presynaptic terminal with a non-homogeneous
Poisson AP train v(t) with a different sinusoidal rate λ(t),
having average value equal to 20Hz, when Q1 = 4700. By
comparing the first and the third plot reported in Fig. 7, the
theoretical analysis is again confirmed. In fact, the presynaptic
terminal responds differently to stimuli with different temporal
patterns, even though the release probability and the type and
number of neurotransmitters do not change.

In Fig. 8, we report the concentration pulse train c1,m(t, d1m)

generated at distance d1m = 20nm by the signal sv
1(t) emit-

ted by the first presynaptic terminal as a function of the time.
We adopt the same simulation setting described in [18] where
glutamate is the neurotransmitter, i.e., Q1 = 4700 molecules,
D1 = 7.6 · 108nm2/s and a = 20nm. We note that the results
confirm the theoretical analysis, i.e., the neuronal information
is encoded in the release patterns of the presynaptic terminals.
In fact, the rate of the concentration pulse train generated by the
first presynaptic terminal coincides with the rate of the released
spike, i.e., λ1(t) = Prel1(t)λ(t). Hence the temporal patterns of
the presynaptic terminals are commutated in the temporal pat-
terns of the neurotransmitter concentrations. We also underline
that the delay experienced by the signal through the channel is
neglectful for the assumed parameter setting, hence it cannot be
properly visualized.

Furthermore, in Fig. 9 we report the expected value
μc1,m (t, d1m) of the concentration train generated at distance of
d1m = 20nm by the signal sv

1(t) emitted by the first presynap-
tic terminal as a function of the time. The results validate once
again the theoretical analysis developed in Section II. In fact,

Fig. 9. Expected value of the concentration pulse train vs time. Y-coordinate
expressed in molecules per nm3.

Fig. 10. Concentration vs space for the first presynaptic terminal at time t =
0.1618. X- and Y-coordinates expressed in nm and Z-coordinate (color map)
expressed in molecules per nm3.

the simulated expected value of the concentration train matches
very well the theoretical one given in equation (8).

In Fig. 10, we report the instantaneous concentration value
c1,m(t, d1m) of the neurotransmitters released by the first presy-
naptic terminal as a function of the space. We plot the values at
the time instant t = 0.1618s, i.e., 100μs after a release event
(see Fig. 8), and the results confirm the impulsive nature of
the concentration, which decreases of two orders of magnitude
within a distance of the order of the μm.

Finally, in Fig. 11, we report the concentration pulse train
c2,m(t, d2m) generated at distance d2m = 20nm by the signal
sv

2(t) emitted by the second presynaptic terminal as function
of the time. We adopt the same simulation setting described
above, and all the previous consideration continue to hold.
Furthermore, since the processing performed by the second
presynaptic terminal is different from the one performed by
the first presynaptic terminal, the concentration pulse train is
different.

IV. DISCUSSION

Here we conduct a brief discussion stemming from the
results derived through the paper. Our theoretical analysis has
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Fig. 11. Concentration pulse train due to the second presynaptic terminal. Y-
coordinate expressed in molecules per nm3 (second plot).

proved that the unique and specific processing of a presynap-
tic terminal can be re-conducted to the cascade of a frequency
selector and an amplitude modulator. More in detail, in agree-
ment with experimental evidences [11]–[15], we design a
communication engineering model where:

• For a given stimulus v(t), a presynaptic neuron emits
different (spatial variable) signals sv

i (t) through its differ-
ent presynaptic terminals. These signals can differ: i) in
amplitude through Qi ; ii) in the temporal pattern λi (t)
through Preli (t). In other words, a presynaptic neuron
produces spatial-frequency variable signals for a given
stimulus through the dynamics filtering of its presynaptic
terminals.

• A presynaptic terminal responds differently to stim-
uli characterized by different patterns λ(t), even if the
presynaptic terminal does not change its properties, i.e.,
Preli (t) and Qi .

• The information transmitted to the postsynaptic neuron
is dictated by the dynamic processing of the presynaptic
terminals, since the neuronal information is encoded in
the release patterns of the presynaptic terminals.

The proposed engineering model represents a first step
toward the design of radically new medical diagnosis and treat-
ment techniques based on the deployment of nanomachines
inside the nervous system. As instance, let us consider a brain
disease caused by a failure event in the propagation of the neu-
ronal signals [8], [30]. In such a case, it is possible to envision
nanomachines implanted in the brain to seamlessly substitute
damaged neurons and their interconnections, by repairing so the
lost functionalities of damaged neurons. For this, the implanted
nanomachines need to: i) sense the electrochemical activity
patterns coming from the healthy neurons; ii) process these pat-
terns by emulating the healthy neuronal process of the neurons
they substitute; iii) induce the corresponding output pattern to
the next healthy neuron. It is clear that many questions and chal-
lenges must be addressed before a system that leverages the
above attributes could become a reality. Nevertheless, models
providing an engineering abstraction of the behavior of healthy
biological neurons, as the one proposed within the manuscript,
constitute the first step in such a direction.

Fig. 12. The tuning of the temporal patterns and the strengths of the presynaptic
terminal releases selects the neurons to communicate.

Fig. 13. Neurons select the information route through dynamical spatial-
frequency filtering.

Further insights for the design of future intrabody nanonet-
works can be drawn by combining the results derived within the
manuscript with the existing literature. Specifically, experimen-
tal data [21]–[26], recently formalized with a system-theoretical
model in [10], have proved that a postsynaptic neuron filters the
stimuli impinging on its spatial distributed dendrites according
to their temporal patterns. Hence, the communication among
neurons is spatial-frequency selective, i.e., a stimulus with a
certain temporal pattern can activate the response of a postsy-
naptic neuron and it can not activate the response of another
postsynaptic neuron. By combining these results with the ones
derived within the manuscript, we can state, as shown in Fig. 12,
that a presynaptic neuron:

• selects the postsynaptic neurons to communicate with
through the temporal patterns of its releases, i.e., through
a proper tuning of {Preli (t)}i∈T ;

• determines the way it affects its postsynaptic neurons
through an amplitude modulation, i.e., through a proper
tuning of Qi .

In a nutshell, neurons select the “route” the information
has to follow through dynamical spatial-frequency filtering,
as illustrated in Fig. 13. Such a behavior could be exploited
for the implementation of novel communication techniques
between the nanomachines and/or between nanomachines and
biological neurons, along with controlling strategies of network
topology and connectivity. Specifically, a nanomachine could
force a neuronal response by properly selecting the frequency
content of its emitted signal. Moreover, a nanomachine could
limit the possible interference generated on the normal neu-
ronal activities by exploiting the spatial-frequency selectivity
of the surrounding neurons. As future works, we plan to further
investigate such a crucial aspect.
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V. CONCLUSION

In this paper, we proposed a transmitter model for capturing
the behavior of biological neurons, by accounting for compart-
mentalization at the level of the presynaptic terminals of the
neuronal processing, induced by the variability of the release
probability within the presynaptic terminals. Specifically, we
have modeled the presynaptic terminals as a tunable transmit-
ter array, with each transmitter characterizing the stochastic
filtering performed by a presynaptic terminal. We have shown
that the unique and specific processing of a presynaptic terminal
can be re-conducted to the cascade of a frequency selector and
an amplitude modulator. This result is crucial for the develop-
ment of future intrabody nanonetwork applications based on the
deployment of nanomachines inside the nervous system, as for
example radically new medical diagnosis and treatment tech-
niques. In fact, such a result provides an engineering abstraction
of the neuronal processes to be used in the design of the artifi-
cial nanomachines for intrabody nanonetworks. We will further
investigate such a topic as future research direction.

APPENDIX A
PROOF OF PROPOSITION 1

Let us denote with Ri the subset of the spike arrival times
{t j }N (t)

j=1 that produce the release of neurotransmitters at the i-
th presynaptic terminal. Stemming from this and accounting
for Definition 2, with reference to the k-th AP of the incom-
ing train, the signal si (t) at the output of the i-th presynaptic
terminal is given by:

si (t) = Qiδ(t − tk)1Ri (tk), (13)

where 1Ri (·) is the indicator function of Ri , defined as:

1Ri (tk) =
{

1, if tk ∈ Ri

0, if tk /∈ Ri .
(14)

By accounting for (13) and (1), it results that the response of
the i-th presynaptic terminal to the spike train v(t) is:

sv
i (t) = Qi

N (t)∑
k=1

δ(t − tk)1Ri (tk) = Qi

Ni (t)∑
j=1

δ(t − t j ), (15)

where Qi is given by (2) or equivalently by (3), and Ni (t) is
the stochastic process representing the number of releases of
the i-th presynaptic terminal until time t . The stochastic pro-
cess in (15) is a thinned process [31], that according to the
neuroscience experimental evidences, can be modeled as a non-
homogenous Poisson impulse process [17], [32], whose rate is
given by12:

λi (t) = Preli (t)λ(t). (16)

Hence the proof follows by recalling that the expected value
of a non-homogenous Poisson impulse process is E[sv

i (t)] =
Qi λi (t) = Qi Preli (t)λ(t), and that the expected value of
Ni (t) is E[Ni (t)] = ∫ t

0 λi (u)du = ∫ t
0 Preli (u)λ(u)du.

12The release is assumed to occur only when a spike invades the presynaptic
terminal, i.e., the spontaneous release probability is assumed to be zero [11].

APPENDIX B
PROOF OF PROPOSITION 2

When a neurotransmitter quantum is released, it propagates
throughout the synaptic cleft. Its propagation can be analyti-
cally modeled by solving the Fick’s laws of the diffusion for
a two-dimensional disc [18], [19]. Hence, by accounting for
(13), if at t j , Qi neurotransmitters are released from the i-th
presynaptic terminal, the concentration at the m-th postsynap-
tic dendrite located at a distance dim from the i-th presynaptic
terminal as a function of time t is [18], [19] :

ci,m(t, dim) = Qi

4πaDi (t − t j )
e
− d2

im
4Di (t−t j ) , (17)

By exploiting (4), the proof follows.

APPENDIX C
PROOF OF COROLLARY 2

By defining ki,m(t, dim)
�= 1

4πa Di t
e
− d2

im
4Di t and by exploiting

(4), the concentration train given in (7) can be re-written as

ci,m(t, dim) = sv
i (t) ⊗ ki,m(t, dim) = Qi

Ni (t)∑
j=1

ki,m(t − t j , dim).

(18)

(18) is a shot-noise process [33], being sv
i (t) a point Poisson

process. Hence, by accounting for the generalized Campbells’
Theorem [33], we can derive its synthetic characterization as in
(8), (9) and (10), and the proof follows.

APPENDIX D
PROOF OF PROPOSITION 3

To derive the delay with which a neurotransmitter concentra-
tion pulse arrives at the m-th postsynaptic dendrite located at a
distance dim from the i-th presynaptic terminal, we compute the
time instant at which Qi ki,m(t − t j , dim) given in (17) reaches
its global maximum [27]. In fact, Qi ki,m(t − t j , dim) has only
one local maximum, which is also its global maximum. We can
therefore compute the position of this maximum by taking the
time derivative of the pulse equation and finding the time instant
at which it is equal to zero:

d{Qi ki,m(t − t j , dim)}
dt

= d

dt

Qi e
− d2

im
4Di (t−t j )

4πaDi (t − t j )
= 0. (19)

From (19), by isolating the variable t , with some algebraic
manipulations, one obtains:

tim = t j + d2
im

4Di
. (20)

This time tim can be interpreted as the time the concentra-
tion pulse spends to reach the postsynaptic membrane located
at a distance rim from the i-th presynaptic terminal if the
neurotransmitter quantum was released at t j , i.e., tim can be
interpreted as the delay, and the proof follows.
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