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Abstract 

 

Communication at the nanoscale can enhance capabilities for nanodevices, and at the 

same time open new opportunities for numerous healthcare applications. One 

approach towards enabling communication between nanodevices is through molecular 

communications. While a number of solutions have been proposed for molecular 

communication (e.g. calcium signaling, molecular motors, bacteria communication), 

in this paper we propose the use of neuronal networks for molecular communication 

network. In particular we provide two design aspects of neuron networks, which 

includes, (i) the design of interface between nanodevice and neurons that can initiate 

signaling, and (ii) the design of transmission scheduling to ensure that signals initiated 

by multiple devices will successfully reach the receiver with minimum interference. 

The solution for (i) is developed through wet lab experiments, while the solution for 

(ii) is developed through genetic algorithm optimization technique, and is validated 

through simulations.  

 

*Manuscript
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1 Introduction 
 

The field of nano/molecular communication is a new area of communication research 

paradigm, aiming to provide communication capabilities between nanoscale devices 

[1] [6]. Increasing the communication capabilities of nanoscale devices can increase 

their capabilities and application base, in particular in the healthcare and 

pharmaceutical industry. The current research of communication at nano and 

molecular scale include both molecular communication as well as electromagnetic 

based nanoscale communication [1] [2]. Molecular communication enables 

communication to be performed between nanoscale devices by utilizing bio-

molecules as a communication medium, while electromagnetic based nano 

communication allows communication between nanodevices using wireless 

technology.  

 

In this paper, we will focus on molecular communication, in particular investigating 

the use of neurons as a networking component. We will discuss a number of 

development aspects of neurons that can be implemented as an underlying network to 

support molecular communication, which includes the following (i) the ability to 

artificially invoke and suppress signaling in neurons, and (ii) a scheduling design in a 

neuron topology that could minimize signaling interference. In the case of (i), the 

solution can be used to allow external devices to interface to neurons and switch the 

neurons to signal transmission. Once devices have switched and signaled the neuron, 

then the case of (ii) can be used to ensure the signaling transmitted through the neuron 

network will minimize interference to ensure that signals propagated will reach the 

destination. We discuss a number of characteristics of neuronal transmission as 

signaling of Ca
2+

 ions trying to highlight the strict relation between these ions and the 

transmission of the action potential from a pre-synaptic neuron to the post-synaptic 

neuron. The signaling behaviour of the neurons will be considered in the design 

process for the scheduling protocol for the neuron networks. Our approach used for 

designing the scheduling algorithm is based on optimization techniques. Optimization 

is a common approach used in various network design problems, such access 

scheduling [3] [4], routing and resource management [5] as examples.  

 

The objective of our paper is to present design solutions that could enable 

nano/molecular communication researchers to use neurons as a communication 

network component, to transfer and re-use common design approaches, and apply best 

practices found in conventional communication network to nanoscale communication 

networks. The paper is organized as follows: Section 2 presents the related work on 

molecular communication and neuronal networks. Section 3 presents background 

information on Neurons. Section 4 presents the design of neuron to nanomachine 

interface, while section 5 presents the design of the scheduling transmission over the 

neuronal network. Lastly, section 6 presents the conclusion.  

 

2 Related Works 
 

The related work is separated into two sections, which includes molecular 

communication as well as neuron networks.  

 

2.1 Molecular Communications 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[Type text] 
 

 
A number of solutions have been proposed for molecular communication in recent 

years. Example of these solutions includes the use of propagation based on molecular 

diffusion (e.g. calcium signaling [7]), walkway based molecular propagation [8] [9], 

or bacteria networks [27]). Current research activities are investigating the 

mathematical theory of molecular communication channels, highlighting the 

challenges of molecular communication based nanonetworks with much addressing 

the physical mechanisms of molecular communication and molecular communication 

based nanonetworks.  

 

A key challenge in molecular communication research is noise characterization in 

volatile aqueous molecular communication channels. For example, in [10] [30], 

Pierobon and Akyildiz presented physical and stochastic noise analysis models for 

diffusion based molecular communication in nanonetworks. The authors develop a 

mathematical expression for physical processes underlying noise sources while their 

stochastic approach characterizes noise sources as random processes. Another 

challenge in molecular communication is data encoding. Typically, two mechanisms 

are proposed, which includes concentration encoding and molecular particle 

encoding. In [11], Mahfuz et al explore solutions to concentration encoding in 

diffusion based molecular communication systems. The authors explores both sample 

and energy based decoding schemes whereby the former samples at a single instant 

and the latter accumulates samples over a defined period.  

 

Accurate computational and energy models are also a key aspect in the development 

and understanding of communicating nanodevice. While many energy management 

models exist for larger scale networks, they are generally not applicable to 

nanonetworks where nanodevices would be more inaccessible and expected to be 

more energy self-sufficient. In [12] Kuran et al propose an energy model for 

molecular communication via diffusion. Work is also being conducted at the data link 

and network layers in nanonetworks. In [13], Nakano et al present a model for in-

sequence molecule delivery inspired by out-of-order delivery techniques in computer 

networks. Simulations using several molecular propagation mechanisms reveal motor 

driven random walks result in higher probability of in-order reception. As expected, 

increased symbol transmission periods and receiver buffering time significantly 

increase probability of successful in-order reception. 

 

While numerous works have investigated communication network theory for 

diffusion based molecular communications, the area of active transport for molecular 

communication is still in its infancy. In particular the investigation into the use of 

neuron networks for active transport, which is what we aim to investigate in this 

paper. 

 
2.2 Neuron Networks 

 
Neurons form highly complex network, in which they are responsible for processing 

information in the brain. Kotsavasiloglu et al [14] [15] developed computational 

models to study the behaviour of biological neural networks and also discussed the 

connection between computational and biological models. The authors performed 

simulations on the neuronal network of healthy neurons, and varied the synapse 

failure rate, refractory periods, excitation synapse ratio, as well as synapse delay. 
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Firstly, they focus on the signal transmission and analysis, and investigated the 

existing critical crossover value regarding the loss of connections by studying the 

robustness and degradation of dynamics on a network by varying the number of 

connections which corresponds to the synapses of the biological neural networks. The 

authors later developed a model to discover the results of synapse loss which can 

occur in biological systems under certain diseases, such as Alzheimer’s and 

Parkinson’s [15].  

 

Breskin et al [16] set up an experimental design to determine statistical properties of 

living neural network. They separate the initially connected network to the fully 

disconnected smaller clusters and use a graph-theoretic approach to study the 

connectivity. It is observed that if the network’s connectivity increases, a percolation 

transition occurs at a critical synaptic strength. Their study also indicates that 

connectivity of neural networks is based on Gaussian distribution rather than scale 

free network. Gabay et al [17] developed a new approach of pre-defined geometry of 

neuronal network clusters using carbon nanotube clusters. In the proposed approach, 

neurons migrate on low affinity substrate to high affinity substrate on a 

lithographically defined carbon nanotube template. Upon reaching the high affinity 

substrates, the neurons will form interconnected networks by sending neurite 

messages. A number of works have also looked at mechanism to stimulate neurons, 

such as the use of LED matrix [28].  

 

Numerous works have studied network properties of neurons, such as connectivity 

and topology formation network. However, we take a number of these studies further 

by utilizing the understanding of these networks, and the ability to use them to 

support molecular communications.   

 

3 Properties of Neuron Signaling 
 

This section will describe the properties of neurons, where these properties will be 

used for the design process described in the later sections. Neurons are a basic unit of 

a neuronal network, where its structure is composed of the cell body, dendrites, the 

axon and its terminals [18]. Neurons have tremendous abilities to self-organize and 

form networks through transmission of neurites, as discussed earlier in the works of 

Gabay et al [17]. Fig. 1 shows an example of neurons that have self-organized into a 

network. 

 

Figure 1.  Examples of pattern of connections in a self organised network of neurons; please note cell 

bodies (or soma), axons (larger filaments) and dendrites (smaller filaments). (magnification x20). 
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As a component of the neural network, neurons are able to process information in two 

forms, which are electrical and chemical signals. The signaling process is created 

from an action potential depolarization in the pre-synaptic membrane that opens the 

Voltage Operated Channels (VOCs), which in turn potentiates the influx of 

extracellular calcium ions (Ca
2+

) [19]. Therefore, increases in intracellular calcium 

concentration initiate exocytosis of synaptic vesicles containing neurotransmitters. 

The neurotransmitters are transmitted through the synapse between the axon terminal 

of the pre-synaptic neuron and the post-synaptic neuron. Therefore, the action 

potential can be seen as a travelling gradient of ions concentration (Na
+
/K

+
, Ca

2+
) 

along the whole length of the cell structure. Based on this property, the information 

that is transferred from one neuron to the next can be considered as the action 

potential that is generated by a cascade of chemical events occurring on the surface of 

the cell membrane. 

 

0 time

[C
a
2
+

]

Tr

 

Figure 2.  Intracellular Ca
2+ 

concentration in a neuron. Ca
2+

 release events must be separated by at least 

the refractory time Tr, the time required to replenish internal Ca
2+

 stores. 

Calcium signaling has an inherent property, which is illustrated in Fig. 2. Once 

calcium within a neuron is activated, there is a refractory period known as Tr. During 

this refractory period, the neuron will not be able to process any other incoming 

signals from other neurons, until the Tr period is complete.  

 

4 Design of Neuron activation interface  
 

In this section we will present the design of interface to activate neuron signaling. Our 

scenario application is illustrated in Fig. 3. In our scenario we have sensors that are 

interfaced to neurons, and activates signaling, where the signaling is propagated to the 

receiver. Therefore, a requirement is the sensor to be able to emit an agent that can 

activate the signaling. It is most ideal if this requirement could be achieved through a 

non-invasive approach (e.g. the firing of the neuron can be controlled externally). Our 

main objective is to invoke trans-membrane calcium chemical signaling which in turn 

will induce signaling between the neurons. Therefore, our aim is to also model the 

calcium signaling that is artificially induced, and to measure this at two different 

neurons to demonstrate how signals have travelled through the network, as it induces 

the calcium signaling of the neurons along the path.  
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Figure 3.  Interface point between sensor devices to neuron 

 

We performed experiments to demonstrate this activation process, using primary 

cortical neuronal cultures obtained from 1-day old rats and plated on customized 

Microelectrode Arrays (MEAs). In this experiment, Acetylcholine (ACh) is the 

agonist used to stimulate firing of neuronal action potentials while Mecamylamine is 

the antagonist which suppresses neuronal firing, thus exhibiting a switch-like 

function. Neural communication can be demonstrated by Ca
2+

 signaling using in vitro 

cultures. Increasing intracellular Ca
2+

 signifies neuronal activation by enhancing 

neurotransmitter release and thus potentiating action potentials between neurons. Fig. 

4 demonstrates the results from the experiment to show the activation of neurons. 

Relative mean fluorescent intensity as a measure of basal Ca
2+

 activity was recorded. 

For application of ACh (20mM) at 40secs, a steady increase of Ca
2+

 ions was detected 

while addition of Mecamylamine (5mM) indicated that Ca
2+

 ion flow was suppressed 

since fluorescence was reduced below basal levels. Therefore, demonstrating the 

ability for external sensor devices to use these agents to switch on/off signaling onto 

the neuron network. At the same time, the experiment also strengthens the idea that 

Ca
2+

 is a valid marker to track signals transmitted between two neurons.  

 

Fig. 5 demonstrates the results of the experiments on the MEA, where measurements 

are taken at different points of the network. As we can see in Fig. 5 (a), the majority 

of neurons were in a dormant state during basal measurement. However, following 

ACh application (Fig 5 (b)), potentiates neuronal firing, thus increasing Ca
2+

 

fluorescence intensity. Conversely, Mecamylamine (Fig 5 c) suppresses neuronal 

firing and decreases Ca
2+

 intensity.  In this particular experimental example, the white 

arrow is where the ACh is applied, and shows the neuron firing, and another 

measurement point is taken at the black arrow, showing the signal propagation. The 

application of ACh could represent a digital 1 bit transmission through the neuronal 

network. 
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Figure 4.   Fluoresence image of neuronal cells recorded over an interval of 300 seconds. In this 

experiement the microinjection and diffusive gradient of Acetylcholine (within the first 30 sec of 

recording) and respective injection and inhibition of Mecamylamine (120 sec) is illustrated. Plot of 

Ca
2+

 flow over the 300 seconds recording showing different response times of clustered neurons 

according to their relative position. The red vertical line represents the time flag at which the ACh was 

microinjected, while the green line represents injection of Mecamylamine as inhibitor.  . 
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Figure 5.  Fluorescent intensities of intracellular Ca
2+

 in primary cortical neurons cultured on customised 

microelectrode arrays (MEAs) stained with Fluo-4 AM. The red vertical lines represent the overall 

course of Ca
2+

 fluorescent intensities for the sample of neurons at the three distinct time points of the 

experiments. a) Measurement of  Ca
2+

 fluorescent intensities in two sample neurons (gray and black 

circles) at baseline after 5 secs; b) Fluorescent intensity in the two neurons at 45 seconds following 

ACh (20mM) application demonstrates an increase in Ca
2+

 ion flow as indicated by a brighter intensity 

of the cell body in the black circle; c) Fluorescent intensity of the two sample neurons following 

Mecamylamine (5mM) addition at 160 seconds from beginning of recording.  

 

5 Design of scheduling protocol for Neuronal Network 
 

The previous section presented our solution for initiating Ca
2+

 signaling on a neuron 

from an external sensor device. However, if the sensors emit ACh randomly to initiate 

signaling, this could lead to large number of interferences in the neuron network, 

which in turn can lead to corruption of information in the receiver. Therefore, a next 

requirement in our design is a scheduling protocol to ensure that minimum 

interference will be encountered during transmission to ensure that signals received 

are not corrupted. We return back to our scenario presented in the previous section, 

which is illustrated in Fig. 6. As illustrated in the figure, our aim is to ensure that 

initiated signals will not result in any collisions during the transmission along the 

network to a single receiver.  
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Figure 6.  Sensor transmission along neuronal networks to single receiver. 

The main aspect of this study is the interaction between the normal activity of the 

neuron network and the packages of information “injected” simultaneously on the 

very same “line”. As discussed above, the neurons possess a refractory period in 

which no signals can be transmitted. This results in a sort of bus timing for the signals 

to pass through the network. Matching the electric signal carried by the action 

potetntial with the Ca
2+

 it may be possible to create a parallel communication system 

that will not compete with the natural one. Fig. 7 illustrates our single bit - Time 

Division Multiplex Access (TDMA) scheduling,where we aim to schedule the firing 

of specific neuron with respect to time.  Fig. 7 (a) – (d) shows the neurons that are 

fired with respect to time, while Fig. 7 (e) shows this from a time division perspective 

(each color represents a single bit of information transmitted from a specific sensor). 

Fig. 7 (e) also shows the single bit transmission for each time slot. The reason that 

only a single bit is transmitted per slot is based on two assumptions – (1) there are 

only two amplitudes that can be produced for bit 1 and 0, and (2) after transmitted, the 

neuron has a waiting time of TR during the refractory period, where this waiting time 

can be used by another sensor to transmit to maximize parallel transmission. 

 

Before we explain our TDMA scheduling algorithm, we will first describe some 

inherent differences between a neuron link and a wireline communication link. In 

most communication networks, each link will usually have different bandwidth 

values. Therefore, the routing process between a source to destination will usually be 

able to accommodate a number of flows. However, this is different in the case of a 

neuron link, where each link of the neuron can only accommodate finite number 

capacity (this capacity may only represent a single bit). At the very same time, once a 

neuron is fired, as described in section 3 (Fig. 2), there is a refractory period where 

the Ca
2+

 is required to settle and return back to the IP3 store. During this refractory 

period, no signal can be transmitted through the neuron. However, this is different 

from a conventional wireline link, where flows that are terminated can accommodate 

new flows immediately. While there are differences, there are also similarities 

between the two. Firstly, as signals are propagated from neuron to neuron, this could 

be compared to a burst-like traffic behavior found in conventional communication 

links. Secondly, delays in intermediate nodes of a communication network (due to 

queuing delays) are very similar to synaptic delays found between the junctions of the 

neurons. We will consider a number of these properties when we are designing our 

TDMA scheduler for the neuronal network. 
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Figure 7.  Single bit - TDMA scheduled transmission from different sensor along a neuron network 

(each color represents a single bit information from a sensor) 

 

The scheduling design for the neuron network is based on an optimization problem, 

and the specific technique that we have applied is based on genetic algorithm. The 

following sections will describe background information on genetic algorithm and 

some of their applications, the problem formulation for the TDMA scheduling 

protocol, and we will also present the simulation results of our proposed design 

algorithm.  

 

5.1 Genetic Algorithm 

 

Genetic Algorithm is an optimization search heuristic [20]. The search process is 

through a guided search that is inspired from the natural evolution. The first step is by 

creating a random initial population of solutions. This initial population will then go 

through a series of evolutionary generations, where an optimum solution will slowly 

emerge based on certain genetic operators. These operators include crossover, 

mutation, and selection.  Each solution of the population is called a chromosome, and 

has an associated fitness function. Therefore, the optimal solution will be achieved, 

once the fitness function of the population starts to converge and stabilize.  

 

Genetic algorithm has been used in a number of different communication network 

problems. Example of these problems includes communication network routing [21] 

[25], as well as network services [22] [23] [24]. In these various applications, genetic 

algorithms have produced improved performance compared to numerous approaches, 

both in design and run-time applications. Therefore, in the same way that genetic 

algorithm has been successfully applied to communication network problems, we aim 

to re-use this approach for design of scheduling in neuronal networks. At the same 

time, since our problem is defined as an optimization problem, we believe that genetic 

algorithm is an appropriate approach.  

 

5.2 Problem Formulation 
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The objective of our design problem is to maximize the number of signaling messages 

(xsi) as well as minimize the time difference between the sensors that release the ACh 

(ta,si)  to activate the signaling, over a period of time Tp. Information that is provided 

for the optimization problem includes the number of sensors si = (s1, s2,… si,… sM), 

where M is the total number of sensors; location of the sensors as to which neuron this 

is connected to; total number of N neurons, where nj = (n1, n2,…nj….nN); as well as 

the neuron topology. Therefore, the objectives can be represented as: 

 



maximise xsi , j,t
j

N


y

Tp


i

M

 (1)  

 



1

| ta,k  ta,l |k.l

si

 , l  k (2)  

 

 

subject to: 



ni j,t (i, j) N (3) 



ta, j  Tp j  si (4) 

 

where x is the message passing through a neuron. Objective (1) is to maximize the 

total number of parallel number of neurons transmitting messages in the topology, 

where 



xsi , j,t  is the message from sensor si passing through neuron j at time t. 

Objective (2) is to minimize the difference in time (ta,si) that sensor si fires the neuron 

through the release of ACh (the aim here is to pack the firing time between the sensor 

to be as close as possible). Equation 3 specifies that at a specific time t, the neurons 

that are fired in the topology must be unique, while equation 4 specifies that all initial 

timing of a sensor ta must be less that the Tp. 

 
 

Figure 8.  Chromosome structure which is composed of an array of sensor, which contains a two 

dimensional array composed of time steps and neurons in the topology 

5.3 Genetic Operators 

 

Chromosome: As described earlier, the genetic algorithm operates by evolving over a 

set of solutions, until an optimum solution is reached. Each solution in a genetic 
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algorithm is referred to as a chromosome. For our specific application, the 

chromosome structure for our solution is illustrated in Fig. 8. The chromosome is 

composed of a set of sensors, where each sensor is composed of a two-dimensional 

array, where the rows represent the time steps for the whole time period Tp, while the 

columns represent the neurons of the topology. During the initial population creation, 

a random initial time ta and neuron na is selected and set to 1. The next period is set to 

ta + t and neighbor neuron nj of na, and this continues until we reach the last neuron of 

the topology or Tp. This procedure is repeated for all sensors. The time steps and 

neurons that have been set are recorded, so that when there is a conflict, the solution 

is eliminated, as this is an infeasible solution. The fitness function of each 

chromosome is calculated as: 

 



fc  log[
1

ta,k  ta,lk,l

si

  (1) n]
j

N

 , k  l, k,l si (5) 

 

Selection: A roulette wheel selection process is used for selection of chromosome 

solution for the next generation. The roulette wheel selection operates as follows: A 

total sum of fitness fT for all chromosome is calculated, after which a probability PS is 

calculated per chromosome by the ratio of fc/fT. Therefore, this ensures that the fitter 

chromosomes are selected for the next generation. 

 

Crossover: The crossover probability PCO is randomly assigned to each chromosome. 

After selection of each generation, each chromosome’s PCO is checked and compared 

to a crossover threshold. If the value is over the threshold, a crossover is performed 

with another chromosome with a higher value threshold. The crossover performed is a 

single point crossover, where the crossover point is selected randomly at a specific 

gene in the chromosome.  

 

Mutation: The mutation is performed by checking if the assigned mutation 

probability PM is over a threshold. A chromosome selected for mutation is performed 

by selecting a random time and neuron point in the two-dimensional array of the gene 

and changing the bit. This is then checked to make sure it’s a feasible solution. 

 

5.4 Performance 

 

We evaluated our algorithm on two neuronal network topology shown in Fig. 9. 
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Figure 9.  Topology of neuron network evaluated (a) Topology 1, 43 neurons, (b) Topology 2, 153 

neurons 

 

A crucial requirement in our performance evaluation is the development of a suitable 

topology. A number of studies have investigated neuron network topologies. A 

common topology to represent tree topology of neuron networks is through using 

Diffusion Limited Aggregation (DLA) [26]. Through the branching structure, 

information are transferred and received. We developed a similar random tree-like 

topology that mimics a dendritic tree of interneuron [26], where we produced two 

topologies of size 43 neurons and 151 neurons. We evenly distributed sensors in the 

topology at a ratio of ¼ to the number neurons. For each topology we only have one 

single receiver (denoted as R) in the figures. 

 

The configuration parameters for the Genetic Algorithm are shown in Table I. The 

number of neurons, sensors, as well as total time steps for the simulation is presented 

in Table II and Table III for Topology 1 and 2, respectively. 

 
Table I. Genetic Algorithm configuration 

Population size 200 

Number of generations 200 

Crossover probability 70% 

Mutation probability 5% 

 
Table II. Configuration for Topology 1 

Number of Neurons 43  

Number of Sensors 11 

Total time steps 40 

Weight (alpha) 0.5 

 
Table III. Configuration for Topology 2 

Number of Neurons 151 

Number of Sensors 40 

Total time steps 320 

Weight (alpha) 0.5 

 

5.5 Genetic Algorithm Performance 
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The performance of our fitness function and its convergence speed is shown in Fig. 

10. We can see that the convergence to the fittest solution converges much faster for 

Topology 1, compared to Topology 2. For simplicity, we have set the weighting value 

 of the fitness function to be 0.5. In our future work, we intend to determine the 

optimal weighting value . 
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Figure 10.  Convergence performance for Topology 1 and 2 ( = 0.5) 

5.6 Neuron Network Performance 

 

Simulation results for GA based scheduling designs for both topologies are illustrated 

in Table IV, where the tests includes the transmission blocking rate, average neuron 

utilization, average transmission delay. As expected, the GA based scheduling 

resulted in successful reception of all transmitted messages for both topologies.  

 
Table IV. Simulation results from TDMA scheduling design 

 Blocking Rate 

 

Average neuron 

utilization 

 

Transmission 

Delay 

(time) 

Max. Link Usage 

 GA Random GA Random GA Random GA Random 

Topology 1 0 0.241 1.36 1.67 5.364 4.711 7 8 

Topology 2 0 0.11 1.45 1.24 10.58 9.50 5 6 

 

Fig. 11 and 12 shows the number of active neurons with respect to the time for the 

GA based solution and compares this to the random signalling of sensors. The result 

is aimed to show the number of parallel neurons that are fired in one instance of time. 

As stated previously, the goal of the GA fitness function is to maximise neuron 

utilization and minimise the signaling time between the sensors. For Topology 2,  the 

GA simulation has an average link usage of 1.45 with a minimum of  0 to  maximum 

of 5 whereas the random simulation resulted in an average link usage of 1.24 nodes 

over all simulations with minimum of 0 and maximum of 6.  As can be seen in Fig. 11 

and 12, the GA simulation exhibits typical characteristics of TDMA scheduling in that 

the state of the system is fully determinable at any time.  

 

The sensor locations and resulting transmission schedule from the GA is simulated. 

For random simulation, sensor locations are distributed normally across the neuron 
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network and all transmit events are also normally distributed in the total transmission 

period (see table IV). As with GA configuration, each sensor transmits once in the 

transmission period. We can see that the blocking rate for the random is 

approximately 0.241 and 0.11 for topology 1 and 2 respectively. The blocking rate is 

higher in topology one because the transmission events are confined to a much 

smaller time period and node group. However the average transmission delay is 

slightly higher than the GA solution. This is expected, since the random signalling 

does not consider the inteference between sensor signalling, and may initiate 

signalling very close to each other.  
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Figure 11.  Comparison of active neurons for Topology 1 beween GA and Random ( = 0.5) 
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Figure 12.  Comparison of active neurons for Topology 2 beween GA and Random ( = 0.5) 

The ability to design and construct neuronal networks to specific topology is crucial 

to the solution that is discussed in this paper. In [31] Jang et al. present a novel 

method that uses carbon nanotube patterned substrates to direct neuron growth. The 

authors report highly directional neurite growth along carbon nanotube lines which is 

attributed to high absorption of neuron adhesion protein by carbon nanotube patterns. 

This method could be used in our solution to create the neuronal network topologies 

discussed in this paper. 
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Similarly, a method to connect bionano sensors to neural networks is essential for our 

solution. Recent studies have shown that carbon nanofibers can be used to interface 

between bionano devices and neuron cells. For example, in [2], Nguyen-Vu et al 

demonstrated the use of vertically aligned carbon nanofibers as an interface to  

neuronal networks. The authors predict this technology will have applications in 

implantable neural devices and the development of neuromodulation based systems. 

In the context of our solution, it can provide the mechanism by which bionano sensors 

can interface and communicate via neuronal networks.  

 

6 Conclusion and remarks 

 

As the field of nanotechnology gains momentum through their numerous application 

base, in particular for healthcare, research in communication capabilities between the 

devices is still in its infancy. Molecular communication aims to address 

communication between nanodevices in biological environment. In this paper, we 

present a development of artificial neuron networks for molecular communications. 

Inherently, neurons form self-organizing networks that enables information 

processing. Due to this property, our aim is to design solution that can enable 

communication between devices connected through a neuronal network. Our scenario 

is a number of sensors that can transmit information through the neuronal network to 

a single receiver. Our very first design is to address a mechanism that interfaces 

between nanodevices to neurons that can initiate neuron signaling. We present our 

solution through experimental work, where we allow signaling to be initiated through 

administering Acetylcholine to cultured neuron, and this signaling can be suppressed 

by administering Mecamylamine. This in turn provides capabilities for nanodevices to 

create switches as they are interfaced to the neurons. The second stage of our design 

is to determine optimal scheduled timing of release of Acetylcholine to initiate 

signaling, in order to minimize any interference in the neuron topology. This is set as 

an optimization problem, where our aim is to minimize the timing of signaling 

between the sensors, while maximizing the number of parallel neurons fired. 

Simulation results have validated our design and comparisons have been made to 

random signaling of sensors. 

 

The aim of our proposed solution, as described earlier, is to develop molecular 

communication solutions that can exploit neuronal networks, and at the same time, to 

design these processes by re-using principles and approaches from communication 

networks. We believe, that is the first step towards investigating neuronal network as 

a solution for molecular communication, and can open numerous opportunities for 

future work.  

 

Acknowledgement 

 

This work has received support from Science Foundation Ireland under Grant Number 

09/SIRG/I1643 (“A Biologically inspired framework supporting network management 

for the Future Internet”); and the Knut and Alice Wallenburg Foundation, Sweden.  

Trinity College was partially funded under the FP7 Project NAMDIATREAM 

(246479), and CRANN Science Foundation Ireland Centre for Science, Engineering, 

and Technology. 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[Type text] 
 

Appendix – Experimental setup 

 

Primary cultured cortical neurons and plating 

 

Primary cortical neurons were dissociated and prepared from 1 day old Ham-Wistar 

rats (BioResources Unit, Trinity College, Dublin 2, Ireland) as described by [29]. The 

cortices were dissected after human death and decapitation and meninges gently 

peeled from neonate brains. Tissue was digested with trypsin from bovine pancreas 

(Sigma) in sterile PBS and incubated for 25 mins at 37 
o
C. This step was neutralised 

with trypsin inhibitor type II S: soybean (0.2 g/ml Sigma) and DNase (0.2 mg/ml). 

Cells were gently titurated and passed through a sterile mesh cell strainer (40 uM) for 

single cell suspension. Following centrifugation, cells were re-suspended in pre-

heated neurobasal media supplemented with glutamax (2mM), heat-inactivated horse 

serum, penicillin & streptomycin (100 units/ml) and B27-supplement.  

 

Cells were seeded onto customised microelectrode arrays (MEAs), fabricated by 

standard lithographical processes onto borosilicate glass, at a density of 1x 10
6 

cells/ml coated with laminin (0.05 mg/ml) and incubated in a humidified atmosphere 

5% CO2: 95 % air at 37 
o
C. A sealed gasket made of polydimethylsiloxane (PDMS, 

Dow Corning, USA) was placed over the cells to contain the neurobasal media to 

prevent evaporation and housed in a sterile Petri dish. 

 

Calcium signaling 

 

Fluo-4 AM Calcium indicator (Invitrogen, USA) was used as a fluorescent indicator 

of mitochondrial calcium. The co-culture of neurons and astrocytes on day-in-vitro 

(DIV) 5-7, were loaded with 4M Fluo-4 AMand pluronic F-127 which was 

dissolved in recording buffer and incubated in the dark for 45mins at 22 
o
C. Cells 

were washed and incubated for 30 mins at 22 
o
C. Relative mean fluorescent intensity 

was measured using optical microscopy. 
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