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Abstract—In this paper, we consider a multi-hop molecular
communication network consisting of one nanotransmitter, one
nanoreceiver, and multiple nanotransceivers acting as relays. We
consider three different relaying schemes to improve the range
of diffusion-based molecular communication. In the first scheme,
different types of messenger molecules are utilized in each hop
of the multi-hop network. In the second and third scheme, we
assume that two types of molecules and one type of molecule are
utilized in the network, respectively. We identify self-interference,
backward intersymbol interference (backward-ISI), and forward-
ISI as the performance-limiting effects for the second and third
relaying schemes. Furthermore, we consider two relaying modes
analogous to those used in wireless communication systems,
namely full-duplex and half-duplex relaying. We propose the
adaptation of the decision threshold as an effective mechanism
to mitigate self-interference and backward-ISI at the relay for
full-duplex and half-duplex transmission. We derive closed-form
expressions for the expected end-to-end error probability of the
network for the three considered relaying schemes. Furthermore,
we derive closed-form expressions for the optimal number of
molecules released by the nanotransmitter and the optimal
detection threshold of the nanoreceiver for minimization of the
expected error probability of each hop.

I. INTRODUCTION

RECENT advancements in the field of nanotechnology
have enabled the development of small-scale devices, so-

called nanomachines. Nanomachines have functional compo-
nents that are on the order of nanometers in size (10−9 m) and
are only capable of performing simple computation, sensing,
or actuation tasks [2]. Their limited processing capabilities
prevent single nanomachines from executing more complex
tasks. Hence, it is envisioned that networks of nanomachines,
so-called nanonetworks, have to be formed to perform more
elaborate and challenging tasks in a distributed manner. For
this to be possible, nanomachines have to be able to commu-
nicate with each other. One of the most important areas for
application of nanonetworks is the biomedical domain, which
includes health monitoring, tissue engineering, and targeted
drug delivery. Other application domains of nanonetworks
include industrial applications, such as new materials and
quality control of products, and environmental applications,
such as biodegradation and air pollution control; see [3], [4].
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Different approaches have been proposed for communi-
cation among nanomachines in the literature such as com-
munication based on hard junctions, electromagnetic waves,
acoustic waves, and molecular communication (MC); see [2].
Among these different approaches, MC has the advantages
of energy efficiency and potential biocompatibility. In fact,
MC is already used by nature for communication among
biological entities and systems, such as molecules, cells,
organelles, and organisms. In MC, molecules are the carriers
of information, which is in contrast to conventional wireless
communication systems, where electromagnetic waves are
employed for this purpose; see [5]. In diffusion-based MC,
the signal molecules that are released by the transmitter
nanomachine in a fluid environment randomly “walk” in all
directions without any further infrastructure and some of them
may reach the receiver nanomachine. Diffusion-based MC
has been extensively studied in the literature, cf. e.g. [6]–[9].
MC nanonetworks for nanomachines pose unique challenges
that are not commonly found in traditional communication
networks and these challenges have to be taken into account
in the development of practical communication protocols for
such networks. One of the challenges in MC is that the
propagation time increases with the square of the distance.
If an intended receiver is far away from the transmitter, then
using a single transmitter may be impractical. One approach
in conventional wireless communications that can be adapted
for MC is the use of intermediate transceivers acting as relays
to aid the communication with distant receivers. Such relays
can potentially improve the reliability and performance of a
communication link.

In fact, relaying of information also plays an important role
in communication among biological systems. For example, in
typical communication between cells, a signaling cell produces
a particular type of signal molecule that is detected by a target
cell; see [10]. The target cell possesses receptor proteins that
recognize and respond specifically to the signal molecule. If a
signal molecule is detected by a cell-surface receptor, then this
information is relayed into the interior of the target cell via a
set of intra-cellular signaling molecules, which act in sequence
and ultimately change the behaviour of the target cell. The
reception and transduction of signal molecules is called cell
signaling. The components of this intracellular relay system
perform crucial functions that are similar to the processing
in conventional wireless relaying schemes, such as decode-
and-forward (DF) and amplify-and-forward (AF) [11]. In the
following, we provide two examples of such components [10,
Ch. 16]:
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1) Cell receptor proteins act like a DF relay. In the pres-
ence of extra-cellular signal molecules, specific signal
molecules bind to receptors, i.e., they decode the mes-
sage. Then, they forward the message by either opening
an ion channel, e.g., ion-channel-coupled receptors, in
the plasma membrane, or activate another protein or
enzyme in the intra-cellular signaling pathway, e.g., G-
protein-coupled receptors (GPCRs) or enzyme-coupled
receptors.

2) Once the GPCRs are activated by binding to the first
messenger molecule, i.e., an extra-cellular molecule,
the G-protein, in turn, activates target enzymes such
as adenylyl cyclase or phospholipase C. These two
target enzymes act like AF relays. When they are acti-
vated, they produce large numbers of small intra-cellular
molecules, in other words, they amplify the message.
Increasing the amount of small intra-cellular molecules
such as cyclic AMP or phospholipase regulates the
activation of other proteins in the intra-cellular signaling
pathway and leads to changes in the behaviour of the
target cell.

Several works have recently addressed multi-hop commu-
nication among nanomachines. Network layer issues in multi-
hop nanonetworks have been introduced in [2], [3]. In [12],
[13], a diffusion-based multi-hop network among bacteria
colonies was analyzed, where each node of the network was
formed by a population of bacteria. Two relaying schemes,
namely sense-and-forward and DF, were proposed, and the
resulting improvements in channel capacity compared to the
no-relay case were confirmed by simulations. In [14], [15],
the design and analysis of repeater cells in Calcium junction
channels, where signal molecules propagate through repetitive
processes of diffusion and amplification, were investigated. In
[16], the rate-delay trade-off of a three-node nanonetwork for
a specific messenger molecule, polyethylene, was analyzed for
network coding at the relay node. A multi-hop routing mech-
anism, where bacteria are deployed as information carriers,
was analyzed in [17]. In [17], the authors adapted some of
the features of bacteria such as conjugation and chemotaxis
to mimic mechanisms found in internet protocol (IP)-based
communication networks, such as opportunistic routing, packet
addressing, and packet filtering. The authors in [18] proposed
the use of virus particles as information carriers, where the
information was encoded in the Deoxyribonucleic Acid (DNA)
or Ribonucleic Acid (RNA) part of the virus particle. Numeri-
cal results showed that the reliability of the proposed network
improved by increasing the number of intermediate nodes at
the cost of increasing the total delay of transmission. Despite
these prior works, to the best of the authors’ knowledge, the
effects of multiple transmissions of random symbols (or bits)
on the performance of MC based multi-hop networks and
corresponding mitigation techniques have not been studied in
the literature so far.

In this paper, we assume that the transmitter nanomachine
emits multiple random bits, and we investigate three different
relaying schemes, namely multi-molecule multi-hop (MM-
MH), two-molecule multi-hop (2M-MH), and single-molecule

multi-hop (SM-MH). In MM-MH, we assume that a differ-
ent type of molecule is used in each hop of the network.
In 2M-MH and SM-MH, we assume that the number of
available molecule types to be used as information carriers
is limited. In particular, in 2M-MH, we assume that two
different types of molecules are available, and in SM-MH,
only one type of molecule is available for use at all relays
of the network for transmission and detection. Hence, in 2M-
MH and SM-MH, multiple transmissions of random bits by
the transmitter nanomachine lead to the occurrence of self-
interference, backward-ISI, and forward-ISI. Self-interference
occurs when one relay must detect the same type of molecule
that it also emits. This effect has also been mentioned in [19],
however, has not been considered in the analysis. Backward-
ISI and forward-ISI occur more generally when the same type
of molecule is used for transmission by multiple nodes of
the network. On the other hand, in MM-MH interference is
avoided completely. However, in practice, it might be difficult
to find a sufficient number of unique molecule types to use in
each hop, such that only the intended receiver is sensitive to
the corresponding type of molecule. Furthermore, with many
different types of molecules in use, it becomes more likely
that some of the used types of molecules cause interference
to adjacent communication links employing the same types of
molecules as the carrier of information or cause inadvertent
reactions elsewhere in the environment. Hence, 2M-MH and
SM-MH are better suited for use in environments with re-
strictions on the types of deployed molecules. However, their
performance is limited by interference and effective mitigation
techniques are needed.

This paper expands the work presented in [1] and makes
the following contributions:

1) As in [1], we derive a closed-form analytical expressions
for the expected error probability of two-hop networks.
We expand these expressions to the multi-hop scenario
for the three above-mentioned relaying schemes based
on the error analysis of a single link described in [20],
[21].

2) For a single link, we minimize the expected error prob-
ability by deriving closed-form analytical expressions
for the optimal detection threshold at the receiver side
and the optimal number of molecules released by the
transmitter.

3) As in [1], we identify the impact of self-interference in a
two-hop network and propose two techniques to mitigate
it. In the first method, the relay adjusts its detection
threshold in each bit interval based on all previously-
detected information bits at the relay. In the second
method, half-duplex relaying is employed instead of full-
duplex relaying.

4) We identify the performance-limiting effects of
backward-ISI and forward-ISI for 2M-MH, and
propose the adaptation of the decision threshold as
a means to mitigate backward-ISI. We combine self-
interference and backward-ISI mitigation to cope with
the detrimental effects of both types of interference in
SM-MH.
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Fig. 1. System model of a multi-hop MC network, where the molecules
used for MM-MH, 2M-MH, and SM-MH are shown in blue, red, and green,
respectively.

TABLE I
PROPERTIES OF THE RELAYING SCHEMES

Relaying # of Available Types Relay Node Rκ
Scheme of Molecules Detects Emits
MM-MH Q+ 1 Aκ Aκ+1

2M-MH 2 A1(A2) A2(A1)
SM-MH 1 A1 A1

The rest of this paper is organized as follows. In Section II,
we introduce the system model and the preliminaries for the
error rate analysis. In Sections III, IV, and V, we evaluate the
expected error probabilities of MM-MH, 2M-MH, and SM-
MH, respectively. Numerical results are given in Section VI,
and conclusions are drawn in Section VII.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we introduce the system model and some
preliminaries regarding the error rate analysis of a single link,
which we require as a prerequisite for the error rate analysis
of the multi-hop network.

A. System Model

In this paper, we use the terms “nanomachine” and “node”
interchangeably to refer to the devices in the network, as the
term “node” is commonly used in the relaying literature. We
assume that a source (S) node and a destination (D) node are
placed at locations (0, 0, 0) and (xD, 0, 0) of a 3-dimensional
space, respectively. We assume that there are Q relay nodes,
Q ∈ Z+, and the κth relay (Rκ) node is placed at (xκ, 0, 0),
κ ∈ {1, 2, ..., Q}, along the x-axis. The relays are equally
spaced between node S and node D, i.e., xκ = κxD/(Q+1),
cf. Fig. 1. We assume that nodes D and Rκ are spherical
in shape with fixed volumes (and radii) VD (rD) and VRκ
(rRκ), respectively, and that they are passive observers such
that molecules can diffuse through them without reacting. In
this paper, for convenience of notation, we also refer to node
S and node D as R0 and RQ+1, respectively.

We consider three different relaying schemes, namely MM-
MH, 2M-MH, and SM-MH, where the number of available
types of molecules, the type of detected molecules at relay
node Rκ, and the type of emitted molecules at relay node Rκ
for each relaying scheme are given in Table I.

Furthermore, we assume that the information that is sent
from node S to node D is encoded into a binary sequence
of length K, WS = {WS [1],WS [2], ...,WS [K]}. Here, WS [j]
is the bit transmitted by node S in the jth bit interval with
Pr(WS [j] = 1) = P1, and Pr(WS [j] = 0) = P0 = 1 − P1,
where Pr(·) denotes probability. The information bits trans-
mitted and detected by relay Rκ in the jth bit interval are
denoted by WRκ [j] and ŴRκ [j], respectively. The information

bit detected at node D in the jth bit interval is denoted
by ŴD[j]. In the following, we denote a sequence of bits
transmitted and detected by node h, h ∈ {S,R1, ..., Rκ, D} by
Wb
h;a = {Wh[a], ...,Wh[b]} and Ŵ

b

h;a = {Ŵh[a], ..., Ŵh[b]},
respectively. We adopt ON/OFF keying for modulation and a
fixed bit interval duration of T seconds. This is a commonly-
used modulation scheme in the MC literature; cf. e.g. [21]–
[25]. The number of released molecules of type Af , f ∈
{1, 2, ..., Q + 1}, released by a transmitting node at the
beginning of a bit interval to convey information bit “1”
is denoted as NAf . No molecules are released to convey
information bit “0”. The concentration of type Af molecules
at the point defined by vector ~r at time t in molecule · m−3

is denoted by CAf (~r, t). We assume that the movements of
individual molecules are independent.

We adopt the DF-relaying protocol, where the relay first de-
codes the received message, and then re-encodes the detected
message for re-transmission. Furthermore, we consider two
relaying modes for multi-hop transmission, namely full-duplex
and half-duplex. For full-duplex transmission, reception and
transmission occur simultaneously at the relay node, i.e., in
each bit interval, relay Rκ detects the information transmitted
by node Rκ−1, and forwards the information bit detected
in the previous bit interval to node Rκ+1. For half-duplex
transmission, the relay performs detection and reception sepa-
rately, i.e., in one bit interval, relay Rκ detects the information
transmitted by node Rκ−1, and in the next bit interval, relay
Rκ forwards the detected information bit to node Rκ+1. In
a multi-hop network consisting of Q relays and using either
protocol, relay Rκ detects the first bit in the κth bit interval. In
other words, it is silent in the first κ bit intervals and does not
transmit. Thus, the total duration required for the transmission
of L bits of information is KT , where K = L + Q and
K = 2L + Q − 1 for full-duplex and half-duplex relaying,
respectively. We note that in the sequence transmitted by node
Rκ, i.e., WK

Rκ;1, the first κ and last Q − κ bits are zero.
Furthermore, for half-duplex relaying, we assume that node
Rκ, where κ is even (odd), transmits in odd (even) bit intervals,
i.e., WRκ [2i+κ] (WRκ [2i+κ+1]), i ∈ {0, ..., L−1}. In even
(odd) bit intervals, node Rκ is silent, i.e., WRκ [2i+κ+1] = 0
(WRκ [2i + κ] = 0), i ∈ {1, ..., L − 1}, and node Rκ+1 does
not detect. For example, a sequence transmitted by node Rκ
for full-duplex and half duplex relaying when κ is odd is given
by (1) and (2), respectively.

B. Preliminaries

In the following, we consider communication between a
transmitting node n ∈ {S,R1, ..., Rκ} and a receiving node
q ∈ {R1, ..., Rκ, D}, n 6= q, where n is the only transmitting
node in the network, and review the corresponding error rate
analysis as reported in [20], [21]. These results are utilized in
the analysis of the multi-hop network in Sections III-V. In the
following, A is the type of molecule released by node n and
detected at node q, i.e., we drop the subscript f for clarity.

The independent diffusion of molecules through the envi-
ronment can be described by Fick’s second law as [20, Eq.
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WK
Rκ;1 =

 0,· · ·, 0︸ ︷︷ ︸
First κ bits

,WRκ [κ+1],WRκ [κ+2], · · · ,WRκ [κ+L],︸ ︷︷ ︸
L bits of information

0, · · · , 0︸ ︷︷ ︸
Last Q− κ bits

 (1)

WK
Rκ;1 =

 0,· · ·, 0︸ ︷︷ ︸
First κ bits

,WRκ [κ+1], 0,WRκ [κ+3], 0,· · ·, 0,WRκ [2L+κ−1]︸ ︷︷ ︸
L bits of information zero-padded with (L− 1) 0s

0, · · · , 0︸ ︷︷ ︸
Last Q− κ bits

 , (2)

(3)]
∂CA(~r, t)

∂t
= DA∇2CA(~r, t), (3)

where DA is the diffusion coefficient of the A molecules in
m2

s . Assuming that node n is an impulsive point source, and
emits NA molecules at the point defined by vector ~rn into an
infinite environment at time t = 0, then the local concentration
at the point defined by vector ~r and at time t is given by [20,
Eq. (4)]

CA(~r, t) =
NA

(4πDAt)3/2
exp

(
−|~r − ~rn|

2

4DA

)
. (4)

It is also shown in [20] that the number of molecules
observed within the volume of node q, Vq , at time t due to
one emission of NA molecules at ~rn at t = 0, N (n,q)

ob,A (t), can
be accurately approximated as a Poisson random variable with
time-varying mean given by

N
(n,q)

ob,A (t) = CA(~rq, t)Vq, (5)

where ~rq is the vector from the origin to the center of node
q, and we used the uniform concentration assumption, i.e.,
we assumed that node q is a point observer or that the
concentration throughout its volume is uniform and equal to
that at its center. This assumption is accurate if node q is
sufficiently far from node n; see [26]. The probability of
observing a given A molecule, emitted by node n at time
t = 0, inside Vq at time t, P (n,q)

ob,A (t), is given by (5) when
setting NA = 1, i.e.,

P
(n,q)
ob,A (t) =

Vq
(4πDAt)3/2

exp

(
−|~rq − ~rn|

2

4DA

)
. (6)

For detection, we adopt a family of receivers introduced in
[21], the so-called weighted sum detectors, where the receiving
node takes M ≥ 1 samples within a single bit interval, adds
the individual samples with a certain weight assigned to each
sample, and then compares the sum with a decision threshold.
For simplicity, we assume equally spaced samples in time, and
equal weights for all samples. The decision of the weighted
sum in the jth bit interval is then given by [21, Eq. (37)]

Ŵq[j] =

{
1 if

∑M
m=1N

(n,q)
ob,A (t(j,m)) ≥ ξq,

0 otherwise,
(7)

where ξq is the detection threshold of node q. The sam-
pling time of the mth sample in the jth bit interval is
t(j,m) = (j − 1)T + tm, where tm = mt0 and t0 is the time
between two successive samples. N (n,q)

ob,A (t(j,m)) is a Poisson

random variable with mean N
(n,q)

ob,A (t(j,m)) for any individual

sample. Thus, the sum of all samples in the jth bit interval,
N

(n,q)
ob,A [j] =

∑M
m=1N

(n,q)
ob,A (t(j,m)), is also a Poisson random

variable whose mean is the sum of the means of the individual
samples, i.e., N

(n,q)

ob,A [j] =
∑M
m=1N

(n,q)

ob,A (t(j,m)). Due to
the independent movement of molecules, node q observes
molecules that were emitted by node n at the start of the
current or any prior bit interval. As a result, the number of
molecules observed within Vq in the jth bit interval due to the
transmission of sequence Wj

n;1, N (n,q)
ob,A [j], is also a Poisson

random variable with mean

N
(n,q)

ob,A [j] = NA

j∑
i=1

Wn[i]

M∑
m=1

P
(n,q)
ob,A ((j − i)T + tm). (8)

Given Wj−1
n;1 and assuming that there is no a priori knowl-

edge about Wn[j], the probability of error in the jth bit
interval, Pe1 [j|Wj−1

n;1 ], can be written as

Pe1 [j|Wj−1
n;1 ] = P1Pr(N (n,q)

ob,A [j] < ξq|Wn[j] = 1,Wj−1
n;1 )

+ P0Pr(N (n,q)
ob,A [j] ≥ ξq|Wn[j] = 0,Wj−1

n;1 ), (9)

where the cumulative distribution function (CDF) of the
weighted sum in the jth bit interval is given by [21, Eq. (38)]

Pr
(
N

(n,q)
ob,A [j] < ξq|Wj

n;1

)
= exp(−N (n,q)

ob,A [j])

×
ξq−1∑
ω=0

(
N

(n,q)

ob,A [j]
)ω

ω!
. (10)

The average error probability in the jth bit interval, P e1 [j],
is obtained by averaging Pe1 [j|Wj−1

n;1 ] over all possible real-
izations of Wj−1

n;1 , i.e.,

P e1 [j] =
∑

Wj−1
n;1 ∈W

Pr(Wj−1
n;1 )Pe1 [j|Wj−1

n;1 ], (11)

where W is a set containing all realizations of Wj−1
n;1 , and

Pr(Wj−1
n;1 ) is the likelihood of the occurrence of Wj−1

n;1 .
In the remainder of this paper, we denote the complete

received signal, i.e., due to molecules released by all nodes,
at node q in the jth bit interval by N (q)

ob,A [j], and the received
signal at node q in the jth bit interval that is originating from
node n by N (n,q)

ob,A [j].

III. MULTI-MOLECULE MULTI-HOP NETWORK

In this section, we evaluate the expected error probability
of a multi-hop network if a unique type of molecule is
used in each hop. We first derive a closed-form expression
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for the expected error probability of a two-hop network, as
presented in [1], and then generalize our analysis to the
multi-hop case. Subsequently, we minimize the expected error
probability of individual hops of the MM-MH network by
finding the optimal number of released molecules and the
optimal detection threshold in each hop.

A. Two-hop Network

In the two-hop case, node S emits type A1 molecules, which
have diffusion coefficient DA1

and can be detected by relay
node R1. The relay emits type A2 molecules having diffusion
coefficient DA2

for forwarding the detected message to node
D, cf. Fig. 1. Node S and node R1 release NA1 and NA2

molecules to transmit bit “1” at the beginning of a bit interval,
respectively.

Since molecules of different types do not interfere with each
other, we only consider full-duplex relaying in this case. The
nodes communicate as follows. At the beginning of the jth
bit interval, node S transmits information bit WS [j], and node
R1 concurrently transmits the information bit detected in the
previous bit interval, WR1

[j] = ŴR1
[j− 1]. At the end of the

jth bit interval, node R1 and node D make decisions on the
respective received signals.

In the two-hop communication link, for binary modulation,
an error occurs if the detection is erroneous in either the first
hop or the second hop. Given WS [j], an error occurs in the
(j + 1)th bit interval if ŴR1

[j] 6= WS [j] and ŴD[j + 1] =
WR1

[j+1], or if ŴR1
[j] = WS [j] and ŴD[j+1] 6= WR1

[j+
1]. Thus, the error probability of the jth bit can be written as

Pe2 [j|WS [j]]=Pr(WS [j] 6=ŴR1
[j])Pr(WR1

[j+1]=ŴD[j+1])

+Pr(WS [j]=ŴR1
[j])Pr(WR1

[j+1] 6=ŴD[j+1]).
(12)

Let us assume that Wj−1
S;1 is given, then the error probability

of the jth bit when WS [j] = 1 and WS [j] = 0 can be written
as

Pe2 [j|WS [j]=1,Wj−1
S;1 ]=Pr(N (R1)

ob,A1
[j]<ξR1 |WS [j]=1,Wj−1

S;1 )

× Pr(N (D)
ob,A2

[j+1]<ξD|WR1
[j+1]=0, Ŵ

j−1
R1;1)

+Pr(N (R1)
ob,A1

[j]≥ξR1 |WS [j]=1,Wj−1
S;1 )

× Pr(N (D)
ob,A2

[j+1]<ξD|WR1
[j+1]=1,Ŵ

j−1
R1;1),

(13)

and

Pe2 [j|WS [j]=0,Wj−1
S;1 ]=Pr(N (R1)

ob,A1
[j]≥ξR1

|WS [j]=0,Wj−1
S;1 )

× Pr(N (D)
ob,A2

[j+1]≥ξD|WR1 [j+1]=1, Ŵ
j−1
R1;1)

+Pr(N (R1)
ob,A1

[j]<ξR1
|WS [j]=0,Wj−1

S;1 )

× Pr(N (D)
ob,A2

[j+1]≥ξD|WR1
[j+1]=0,Ŵ

j−1
R1;1),

(14)

respectively, where N
(R1)
ob,A1

[j] = N
(S,R1)
ob,A1

[j], N (D)
ob,A2

[j] =

N
(R1,D)
ob,A2

[j], and the involved probabilities can be obtained

Fig. 2. Illustration of a MM-MH network, where Peκ denotes the expected
error probability after the first κ hops of the network.

based on (10). If we do not have knowledge about WS [j],
then the expected error probability is given by

Pe2 [j|Wj−1
S;1 ] = P1Pe2 [j|WS [j] = 1,Wj−1

S;1 ]

+ P0Pe2 [j|WS [j] = 0,Wj−1
S;1 ]. (15)

For a given Wj−1
S;1 , there are 2(j−1) different possible real-

izations of Ŵ
j−1
R1;1. However, in (13) and (14), to keep the

complexity of evaluation low, we consider only one realization
of Ŵ

j−1
R1;1 which leads to an approximation. In particular,

this realization of Ŵ
j−1
R1;1 is obtained via a biased coin toss.

To this end, we model the detected bits in Ŵ
j−1
R1;1 , i.e.,

ŴR1 [i], i ∈ {1, 2, ..., j − 1}, as ŴR1
[i] = |λ − WS [i]|,

where λ ∈ {0, 1} is the outcome of the coin toss with
Pr(λ = 1) = Pe1 [i|Wi−1

S;1 ] and Pr(λ = 0) = 1− Pe1 [i|Wi−1
S;1 ].

Our simulation results in Section VI confirm the accuracy of
this approximation.

B. Multi-hop Network
We now extend our analysis to the multi-hop case. Re-

lay node Rκ, κ ∈ {1, 2, ..., Q}, detects type Aκ messenger
molecules, with diffusion coefficient DAκ , that are released
by node Rκ−1, and emits messenger molecules of type Aκ+1,
with diffusion coefficient DAκ+1

, to forward the detected
message to node Rκ+1. We assume that node D can only
detect the type of molecule emitted by the last relay, AQ+1,
cf. Fig. 1. Thus, there is no direct communication path between
node S and node D.

In the following, we propose a recursive algorithm to eval-
uate the expected error probability of the multi-hop network,
where in the κth iteration of the algorithm, we evaluate the
expected error probability of the first κ+1 hops of the network.
To this end, we define Peκ [j|WS [j] = {0, 1},Wj−1

S;1 ] as the
conditional expected error probability of the first κ hops in
the jth bit interval, i.e., the probability that node S sends
WS [j] = {0, 1} and ŴRκ [j + κ − 1] 6= WS [j] is detected at
node Rκ. Let us assume that Peκ [j|WS [j] = {0, 1},Wj−1

S;1 ] is
known. In order to evaluate Peκ+1

[j|WS [j] = {0, 1},Wj−1
S;1 ],

we form a virtual two-hop link where the first κ hops of the
multi-hop network are modeled as the first hop of the virtual
two-hop link, cf. Fig 2. Thus, the expected error probability of
the first (κ+1) hops of the multi-hop network when WS [j] = 1
and WS [j] = 0 can be written as

Peκ+1
[j|WS [j] = 1,Wj−1

S;1 ]=Peκ [j|WS [j]=1,Wj−1
S;1 ]

× Pr(N (Rκ+1)
ob,Aκ+1

[j+κ]<ξRκ+1
|WRκ [j+κ]=0, Ŵ

j+κ−2
Rκ;1 )

+(1−Peκ [j|WS [j]=1,Wj−1
S;1 ])

× Pr(N (Rκ+1)
ob,Aκ+1

[j+κ]<ξRκ+1
|WRκ [j+κ]=1, Ŵ

j+κ−2
Rκ;1 )

(16)
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and

Peκ+1
[j|WS [j] = 0,Wj−1

S;1 ]=Peκ [j|WS [j]=0,Wj−1
S;1 ]

× Pr(N (Rκ+1)
ob,Aκ+1

[j+κ]≥ξRκ+1
|WRκ [j+κ]=1, Ŵ

j+κ−2
Rκ;1 )

+(1−Peκ [j|WS [j]=0,Wj−1
S;1 ])

× Pr(N (Rκ+1)
ob,Aκ+1

[j+κ]≥ξRκ+1
|WRκ [j+κ]=0, Ŵ

j+κ−2
Rκ;1 ),

(17)

respectively, where N (Rκ+1)
ob,Aκ+1

[j] = N
(Rκ,Rκ+1)
ob,Aκ+1

[j]. If we do not
have a priori knowledge about WS [j], then Peκ+1

[j|Wj−1
S;1 ] is

given by

Peκ+1
[j|Wj−1

S;1 ] = P1Peκ+1
[j|WS [j] = 1,Wj−1

S;1 ]

+ P0Peκ+1 [j|WS [j] = 0,Wj−1
S;1 ]. (18)

Similar to the two-hop case, the previously detected bits in
Ŵ
j+κ−2
Rκ;1 , i.e., ŴRκ [i], i ≤ j+κ−2, are modeled as ŴRκ [i] =

|λ −WS [i]|, where λ ∈ {0, 1} is the outcome of a coin toss
with Pr(λ = 1) = Peκ [i|Wi−1

S;1 ] and Pr(λ = 0) = 1 − Pr(λ =

1). Given Wj−1
S;1 , the proposed algorithm for evaluation of the

expected error probability of an MM-MH network consisting
of Q > 1 relays, PeQ+1

[j|Wj−1
S;1 ], is summarized in Algorithm

1.

Algorithm 1: Evaluation of PeQ+1
[j|Wj−1

S;1 ]

Initialization: Given Wj−1
S;1 evaluate

Pe2 [j|WS [j]=1,Wj−1
S;1 ] and Pe2 [j|WS [j]=0,Wj−1

S;1 ] via
(13) and (14), respectively.
for κ = 2 : Q do

Evaluate Peκ+1
[j|WS [j] = 1,Wj−1

S;1 ] via (16), given
Peκ [j|WS [j] = 1,Wj−1

S;1 ] calculated in the previous
iteration.
Evaluate Peκ+1

[j|WS [j] = 0,Wj−1
S;1 ] via (17), given

Peκ [j|WS [j] = 0,Wj−1
S;1 ] calculated in the previous

iteration.
end
Evaluate PeQ+1

[j|Wj−1
S;1 ] via (18).

C. Parameter Optimization

The performance of a MM-MH network can be improved
by minimizing the error probability in each hop. To this end, in
this section, we consider a single communication link between
a transmitting node n ∈ {S,R1, ..., Rκ} and the corresponding
receiving node q ∈ {R1, ..., Rκ, D}, q = n + 1, and derive
closed-form expressions for both the optimal detection thresh-
old, ξopt, of node q, and the optimal number of molecules,
NAopt , released by node n for minimization of the expected
error probability of this single link.

1) Optimal Number of Released Molecules: Eq. (8) speci-
fies the expected number of molecules observed within Vq due
to the transmission of Wj

n;1. This equation can be re-written

as

N
(n,q)

ob,A [j] = NA

j−1∑
i=1

Wn[i]

M∑
m=1

P
(n,q)
ob,A ((j − i)T + tm)

+NAWn[j]

M∑
m=1

P
(n,q)
ob,A (tm), (19)

where the first term is the expected number of observed
molecules due to the transmission of all previous bits (ISI),
Wn[i], i < j, and the second term is the expected number
of molecules observed due to the transmission of the most
recent bit, Wn[j]. From (19), and for a given ξq , we observe
that decreasing NA reduces the effect of ISI, and increases the
probability of miss detection, i.e., Pr(Ŵq[j] 6= Wn[j]|Wn[j] =
1). On the other hand, increasing NA enhances the effect
of ISI, and increases the probability of false alarm, i.e.,
Pr(Ŵq[j] 6= Wn[j]|Wn[j] = 0). Thus, the expected error
probability in (11) can be minimized by optimizing the number
of released molecules NA. In (11), any realization of Wj−1

n;1

is independent of all other realizations. As a result, we can
minimize (9) for a given Wj−1

n;1 . N (n,q)
ob,A [j] is a Poisson random

variable that has a discrete distribution, which complicates the
optimization. However, it is shown in [21] that the CDF of a
Poisson random variable X with mean ρ can be accurately
approximated by a continuous regularized incomplete gamma
function Q(·, ·), Pr(X < s) = Q(dse, ρ) = Γ(dse, ρ)/Γ(dse)
for s > 0, where Γ(s, ρ) is the incomplete Gamma function
given by [27, Eq. (6.5.3)]

Γ(s, ρ) =

∫ ∞
ρ

e−tts−1dt. (20)

The Gamma function, Γ(s), is a special case of (20) with
ρ = 0. Approximating the discrete CDF of a Poisson random
variable by the continuous regularized incomplete Gamma
function leads to an approximation of the optimal number of
released molecules.

Proposition 1: Given Wj−1
n;1 , the optimal number of

molecules released by node n in the beginning of the jth bit
interval, NAopt [j], that minimizes the expected error probabil-
ity of a single link can be approximated as

NAopt [j] =

⌊ ln
(
P1

P0

)
+ ξq ln

(
m1[j]
m0[j]

)
∑M
m=1 P

(n,q)
ob,A (tm)

⌉
, (21)

where ln(·) is the natural logarithm, b·e is the nearest integer,
mx[j], x ∈ {0, 1}, is given by

mx[j] = N
(n,q)

ob,A [j]
∣∣
Wn[j]=x,Wj−1

n;1
, (22)

and P
(n,q)
ob,A (·) is given in (6). mx[j] is the conditional mean

of Poisson random variable N
(n,q)
ob,A [j] in the jth bit interval

when the most recent information bit transmitted by node n
is Wn[j] = x, and can be evaluated based on (19). When
P1 = P0, (21) simplifies to

NAopt [j] =

⌊ ξq ln
(
m1[j]
m0[j]

)
∑M
m=1 P

(n,q)
ob,A (tm)

⌉
. (23)
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Proof: The partial derivative of the incomplete Gamma
function with respect to its second elementary variable is given
by [27, Eq. (6.5.25)] ∂Γ(s, ρ)/∂ρ = −e−ρρs−1. By taking
the derivative of (9) with respect to continuous NA, solving
the resulting equation for NA, and rounding the solution to
the nearest integer number, the optimal number of molecules
released by node n can be written as (21).

Remark 1: Eq. (23) provides insight for the selection of
NAopt [j] based on the other system parameters. In particular,
NAopt [j] scales linearly with ξ, i.e., if the detection threshold
at node q is doubled, node n should transmit twice as many
molecules. Intuitively, if the ISI increases, e.g., because the
bit interval duration is decreased, then we would expect that
node n should release fewer molecules. In (23), when the ISI
increases, m1[j]

m0[j]
approaches one, and, as a result, NAopt [j]

approaches zero. Thus, (21) and (23) can be used to select
the optimal number of released molecules for a specific mod-
ulation bit interval duration, and/or a certain distance between
node n and node q. The average optimal number of released
molecules, NAopt , can be evaluated by taking the average of
NAopt [j] over all realizations of Wj−1

n;1 , and averaging over all
bit intervals.

2) Optimal Detection Threshold: We now consider optimiz-
ing the detection threshold at the receiver side. We assume that
node n releases a fixed number of molecules, NA, for bit “1”,
and no molecules for bit “0”. The simulation results in [20] re-
veal that the performance of the receiver depends on the value
of the chosen detection threshold ξ. Increasing ξ enhances the
probability of miss detection. However, decreasing ξ increases
the probability of false alarm. Thus, we are interested in the
optimal detection threshold, ξopt, that minimizes (11).

Proposition 2: Given Wj−1
n;1 , the optimal detection threshold

at the receiver in the jth bit interval, that minimizes the ex-
pected error probability of a single link, can be approximated
as

ξopt[j] =

⌊ ln
(
P0

P1

)
+NA

∑M
m=1 P

(n,q)
ob,A (tm)

ln
(m1[j]
m0[j]

) ⌉
. (24)

For P1 = P0, (24) simplifies to

ξopt[j] =

⌊
NA

∑M
m=1 P

(n,q)
ob,A (tm)

ln
(m1[j]
m0[j]

) ⌉
. (25)

Proof: To find (24), we have to take the partial derivative
of (9) with respect to ξq , which, in turn, requires the partial
derivative of (10) with respect to its first elementary variable,
ξq , if we approximate (10) with Q(dξqe, N

(n,q)

ob,A ). However,
since there is no closed-form expression for this partial deriva-
tive, we approximate the factorial term in (10) with the Stirling
formula, ω! ' (2πω)1/2(ω/e)ω . Thus, it can be shown that the
discrete CDF of Poisson random variable N (n,q)

ob,A [j] with mean

N
(n,q)

ob,A [j], Eq. (10), can be approximated with a continuous

CDF as

Pr(N (n,q)
ob,A [j] < ξq|Wj

n;1) '

∫ ξq

0

e(ω−N
(n,q)
ob,A [j])

(
N

(n,q)
ob,A [j]

ω

)ω+1/2

√
2πN

(n,q)

ob,A [j]

dω, (26)

Using (26) as the continuous approximation of the CDF of
a discrete Poisson random variable, taking the derivative of (9)
with respect to continuous ξq , solving the resulting equation
for ξq , and rounding the solution to the nearest integer value,
the optimal detection threshold at node q can be expressed as
in (24).

Remark 2: Eqs. (24) and (25) can be used to select the
optimal detection threshold at the receiver side for different
parameters of the system such as the modulation bit interval,
the distance between node n and node q, the number of
samples per bit interval, M , and the number of released
molecules by node n, NA. The average optimal detection
threshold, ξopt, can be evaluated by averaging (24) over all
bit intervals and realizations of Wj−1

n;1 .
Remark 3: Eqs. (21) and (24) could be solved iteratively to

find the jointly optimal ξopt[j] and NAopt [j]. However, we do
not consider the joint optimization of ξopt[j] and NAopt [j],
since solving (24) for NA leads to (21). Hence, as far as
the performance is concerned, optimizing ξq is equivalent to
optimizing NA. Thus, the parameters to be optimized can be
chosen for implementation convenience.

IV. TWO-MOLECULE MULTI-HOP NETWORK

In this section, we consider 2M-MH, where we assume
that only two different types of molecules are available as
information carriers, namely type A1 and type A2 molecules.
Since node Rκ uses two different molecules for reception
and transmission, we focus on full-duplex transmission. In
the jth bit interval, relay node Rκ detects the information
bit transmitted by node Rκ−1, and sends the information
bit detected in the previous bit interval to node Rκ+1. Set
RE ∈ {R2i}, 0 ≤ i ≤ bQ+1

2 c, includes all relays with even
index, which release and detect type A1 and A2 molecules, re-
spectively. Analogously, set RO ∈ {R2i+1}, 0 ≤ i ≤ bQ−12 c,
includes all relays with odd index, which release and detect
type A2 and A1 molecules, respectively.

In this scenario, A1 molecules released by the relays belong-
ing to set RE may interfere with each other at relay Rκ ∈ RO,
and Rκ cannot differentiate between A1 molecules released
by Rκ−1 and interfering A1 molecules released by the other
relays in setRE\Rκ−1. We refer to this effect, which is caused
by the random walks of the molecules, as backward-ISI when
the interfering molecules were released by relays in future
hops, i.e., by relays R2i ∈ RE , 2i > κ, and as forward-
ISI when the interfering molecules were released by relays
in previous hops, i.e., relays R2i ∈ RE , 2i < κ. The same
effects are present for the A2 molecules released by the relays
belonging to the set RO at relay Rκ ∈ RE .

Let us consider a short example to clarify the occurrence
of backward-ISI and forward-ISI. Example 1: Let us assume
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that Rκ−2, Rκ−1, Rκ, and Rκ+1, κ 6= {1, Q}, are four
consecutive relays that release type A2, A1, A2, and A1

molecules, respectively. Furthermore, assume that the infor-
mation sequences transmitted by Rκ−2 and Rκ−1 are “1000”
and “0100”, respectively, i.e., WRκ−2

[j] = WRκ−1
[j+ 1] = 1,

WRκ−2
[j+1] = WRκ−2

[j+2] = WRκ−2
[j+3] = WRκ−1

[j] =
WRκ−1 [j+ 2] = WRκ−1 [j+ 3] = 0, WRκ−2 [i] = 0, i < j, and
WRκ−1 [i] = 0, i < j + 1. Due to the broadcast nature of
the molecular channel, some of the A2 molecules released by
Rκ−2 at the beginning of the jth bit interval will be observed
at Rκ+1 during the current and subsequent bit intervals at
the time of sampling for detection of ŴRκ+1

[i], i ∈ {j, j +
1, j + 2, j + 3}. This causes forward-ISI and may lead to
an erroneous decision for ŴRκ+1 [i]. Let us assume that no
error occurs in the transmission of WRκ−1

[j + 1] to relay
Rκ+1, i.e.,ŴRκ+1 [j + 2] = 1. Thus, in the beginning of the
(j + 3)th bit interval, Rκ+1 releases NA1

A1 molecules to
forward the message to Rκ+2, i.e., WRκ+1

[j+ 3] = 1. Due to
the broadcast nature of the molecular channel, some of the A1

molecules released by Rκ+1 will be observed within VRκ at
the time of sampling for detection of WRκ−1 [j+ 3] = 0. This
causes backward-ISI and may lead to an erroneous decision
for ŴRκ [j + 3].

A. Backward-ISI Mitigation

In the following, we propose an algorithm to mitigate
backward-ISI. In this algorithm, the relay node Rκ, κ 6= Q,
adjusts its decision threshold in the jth bit interval based on
its detected information bits in the previous j−2 bit intervals.
The adaptive decision threshold of the relay Rκ in the jth bit
interval, ξBIRκ [j], consists of two parts. The first part is a fixed
threshold, ξ, and the second part, ξBIExp[j], changes adaptively
based on the number of molecules expected within VRκ due
to the emissions of relay node Rκ+1, i.e.,

ξBIRκ [j] = ξ + ξBIExp[j]. (27)

To optimize ξBIExp[j], we require the probability of observing
a given molecule transmitted by node Rκ+1 at time t = 0
within VRκ at time t. This probability can be evaluated via (6)
after substituting ~rq and ~rn with ~rRκ and ~rRκ+1 , respectively.
Thus, given Ŵ

j−2
Rκ;1 and assuming that no error occurs in

transmission of this sequence to Rκ+1, the expected number
of molecules observed within VRκ in the jth bit interval due
to the transmission of Ŵ

j−2
Rκ;1 by Rκ+1 can be written as

N
(Rκ+1,Rκ)

ob,A [j] = NA

j−2∑
i=1

ŴRκ [i]

×
M∑
m=1

P
(Rκ+1,Rκ)
ob,A ((j − i)T + tm), (28)

where A = A1 if Rκ ∈ RO and A = A2 if Rκ ∈ RE . Hence,
the varying part of the adaptive decision threshold of node Rκ
is chosen as ξBIExp[j] = N

(Rκ+1,Rκ)

ob,A [j].
Remark 4: In a multi-hop network consisting of Q relays,

the decision thresholds of relay node RQ and node D (RQ+1)
are fixed to ξ, since backward-ISI does not occur at node RQ

and node D. From this, we can also conclude that the smallest
multi-hop network in which backward-ISI occurs is a three-
hop network.

Remark 5: In our proposed algorithm for mitigation of
backward-ISI, we exploit the knowledge of the sequence
transmitted by relay Rκ+1, Wj

Rκ+1;1
, which is obtained from

the detected sequence at relay Rκ, Ŵ
j−2
Rκ;1, and the assumption

that no error occurs in the transmission of Ŵ
j−2
Rκ;1 to Rκ+1.

However, since the sequences transmitted by the relay nodes in
hops i < κ are not known at Rκ, the adaptation of the decision
threshold cannot be applied for mitigation of forward-ISI, and
as a result, forward-ISI is the performance bottleneck of 2M-
MH.

B. Performance Analysis

For evaluation of the expected error probability of the
considered network via (18), we require the complete received
signal at node Rκ+1. When κ+1 is odd, the complete received
signal in the jth bit interval at node Rκ+1, N (Rκ+1)

ob,A1
[j], is the

sum of all received signals transmitted by the relays in the set
RE , i.e.,

N
(Rκ+1)
ob,A1

[j] =

bQ+1
2 c∑
i=0

N
(R2i,Rκ+1)
ob,A1

[j]. (29)

Since any individual term in (29), N (R2i,Rκ+1)
ob,A1

[j], is a
Poisson random variable with time-varying mean, N (Rκ+1)

ob,A1
[j]

is also a Poisson random variable whose mean is the sum of
the means of all individual variables, and can be written as

N
(Rκ+1)

ob,A1
[j] =

bQ+1
2 c∑
i=0

N
(R2i,Rκ+1)

ob,A1
[j]. (30)

Analogously, when κ + 1 is even, the complete received
signal at Rκ+1 in the jth bit interval is

N
(Rκ+1)
ob,A2

[j] =

bQ−1
2 c∑
i=0

N
(R2i+1,Rκ+1)
ob,A2

[j], (31)

which is a Poisson random variable whose time-varying mean
is the sum of the means of all individual variables, i.e.,

N
(Rκ+1)

ob,A2
[j] =

bQ−1
2 c∑
i=0

N
(R2i+1,Rκ+1)

ob,A2
[j]. (32)

Finally, the expected error probability of the considered net-
work can be evaluated via (18), after substituting N (Rκ+1)

ob,Aκ+1
[j]

and ξRκ+1
with N

(Rκ+1)
ob,A [j] and ξBIRκ+1

[j], respectively, and
considering that all conditional probabilities have to be con-
ditioned on the set {Ŵ

j+κ−2
R;1 },∀R ∈ RE , when κ + 1 is

odd, and on {Ŵ
j+κ−2
R;1 },∀R ∈ RO, when κ+ 1 is even. The

detected bits in Ŵ
j+κ−2
Rκ+1;1, i.e., ŴRκ+1

[i], i < j + κ − 2, are
modeled as ŴRκ+1

[i] = |λ−WS [i]|, where λ ∈ {0, 1} is the
outcome of a coin toss with Pr(λ = 1) = Peκ [i|{Ŵ

i+κ−2
R;1 }]

and Pr(λ = 0) = 1− Pr(λ = 1).
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V. SINGLE-MOLECULE MULTI-HOP NETWORK

We now consider an SM-MH network where the same type
of molecule is employed in all hops, cf. Fig. 1. In this scenario,
in addition to the occurrence of backward-ISI and forward-
ISI, utilizing the same type of molecule for transmission
and reception at relay Rκ leads to the occurrence of self-
interference. In particular, some of the molecules released by
relay node Rκ at the beginning of a bit interval stay nearby
and are observed during this bit interval and in subsequent bit
intervals inside VRκ . This effect causes self-interference. In
the following, we first study the effect of self-interference for
a two-hop network, where the effect of backward-ISI does
not exist, and we propose two approaches to mitigate the
self-interference. Then, we consider a multi-hop network and
extend our proposed algorithms to the joint mitigation of self-
interference and backward-ISI.

A. Two-hop Network

In this case, node S releases molecules of type A1, which
are detected by relay node R1. Node R1 also releases
molecules of type A1 to forward the detected message to node
D. We first consider full-duplex transmission. We provide a
short example to clarify the occurrence of self-interference.

Example 2: Let us assume that the information sequence
emitted by node S is “10”, i.e., WS [j] = 1,WS [j + 1] =
0, and WS [m] = 0,m < j, and that no error occurs in the
transmission of WS [j] to node R1, i.e., ŴR1

[j] = WS [j] = 1.
At the beginning of the (j+1)th bit interval, node R1 releases
NA1 molecules to forward the detected message to node D,
i.e., WR1

[j + 1] = 1. Due to the random movement of the
molecules, some of the molecules released by the relay node
may be observed within its own volume, VR1

, at the time of
sampling for detection of WS [j + 1]. This self-interference
may lead to an erroneous decision for ŴR1 [j + 1].

In the following, we propose two approaches to mitigate
self-interference: 1) employing an adaptive decision threshold
at the relay, and 2) employing half-duplex relaying instead of
full-duplex relaying.

1) Adaptive Decision Threshold: In the first approach,
analogous to the scheme for the mitigation of backward-
ISI described in Section IV-A, the relay adjusts its decision
threshold in each bit interval based on the information bits
it has detected in all previous bit intervals, Ŵ

j−1
R1;1. Thus, the

adaptive decision threshold of the relay in the jth bit interval,
ξSIR1

[j], can be written as

ξSIR1
[j] = ξ + ξSIExp[j], (33)

where ξSIExp[j] changes adaptively based on the number of

molecules expected within VR1
, given Ŵ

j−1
R1;1. To optimize

ξSIExp[j], we have to determine the probability of observ-
ing a given molecule transmitted by the relay node R1 at
t = 0 within VR1

at time t. We denote this probability as
P

(R1,R1)
ob,A1

(t). P (R1,R1)
ob,A1

(t) may be considered as a special case
of P (n,q)

ob,A (t) when n = q, i.e., ~rq = ~rn. However, in this
case, the conditions necessary for the validity of the uniform
concentration assumption do not hold [26]. Hence, we can

not use (6) to evaluate P
(R1,R1)
ob,A1

(t). The general form of
P

(n,q)
ob,A (t), when the uniform concentration assumption is not

made, is given by [26, Eq. (27)]. It can be shown that, by using
l’Hôpital’s rule, P (R1,R1)

ob,A1
(t) in the limit of |~rq −~rn| → 0 can

be written as

P
(R1,R1)
ob,A1

(t) = erf

(
rR1

2
√
DA1

t

)
−
rR1 exp

(
−rR1

2

4DA1
t

)
√
πDA1

t
, (34)

where rR1
is the radius of the relay node R1, and erf(·) denotes

the error function as defined by [27, Eq. (7.1.1)]. Thus, given
Ŵ
j−1
R1;1, the expected number of molecules observed within

VR1
in the jth bit interval, N

(R1,R1)

ob,A1
[j], can be written as

N
(R1,R1)

ob,A1
[j] = NA1

j−1∑
i=1

ŴR1
[i]

M∑
m=1

P
(R1,R1)
ob,A1

((j − i)T + tm),

(35)
and the varying part of the adaptive decision threshold of
the relay becomes ξSIExp[j] = N

(R1,R1)

ob,A1
[j]. The number of

molecules observed inside VR1
in the jth bit interval when

only the relay node transmits, N
(R1,R1)
ob,A1

[j], is a Poisson
random variable with the mean given by (35). The complete re-
ceived signal at the relay node in the jth bit interval, N (R1)

ob,A1
[j],

is the sum of two signals, i.e., N (R1)
ob,A1

[j] = N
(S,R1)
ob,A1

[j] +

N
(R1,R1)
ob,A1

[j]. Since N
(S,R1)
ob,A1

[j] and N
(R1,R1)
ob,A1

[j] are Poisson
random variables with time-varying means, N (R1)

ob,A1
[j] is also a

Poisson random variable whose mean is the sum of the means
of the individual variables, i.e., N

(R1)

ob,A1
[j] = N

(S,R1)

ob,A1
[j] +

N
(R1,R1)

ob,A1
[j]. Analogously, the complete received signal at

node D in the jth bit interval, N (D)
ob,A1

[j], is the sum of
two Poisson random variables N

(S,D)
ob,A1

[j] and N
(R1,D)
ob,A1

[j].
Thus, N (D)

ob,A1
[j] is also a Poisson random variable with time-

varying mean N
(D)

ob,A1
[j] = N

(S,D)

ob,A1
[j] + N

(R1,D)

ob,A1
[j]. Finally,

the expected error probability of the considered network can
be evaluated via (15), after substituting ξR with ξSIR1

[j], and
considering that all conditional probabilities in (15) have to
be conditioned on both Wj−1

S;1 and Ŵ
j−1
R1;1. The detected bits

in Ŵ
j−1
R1;1, i.e., ŴR1 [i], i < j, are modelled as ŴR1 [i] =

|λ −WS [i]|, where λ ∈ {0, 1} is the outcome of a coin toss
with Pr(λ = 1) = Pe1 [i|Wi−1

S;1 , Ŵ
i−1
R1;1] and Pr(λ = 0) =

1 − Pr(λ = 1). Pe1 [i|Wi−1
S;1 , Ŵ

i−1
R1;1] can be evaluated via (9),

after substituting N
(n,q)
ob,A [i] and ξq with N

(R1)
ob,A1

[i] and ξSIR1
[i],

respectively.
2) Half-Duplex Relaying: In the second approach to miti-

gate self-interference, half-duplex relaying is adopted. In half-
duplex relaying, reception and transmission at the relay occur
in two consecutive bit intervals, giving the molecules released
at the relay node time to leave VR1

, such that they are less
likely to interfere with the relay’s decisions.

For half-duplex relaying, the nodes communicate as follows.
In odd bit intervals, S transmits and R1 receives, and in even
bit intervals, R1 transmits and D receives. In other words, in
the (2j−1)th bit interval, node S transmits the jth information
bit, i.e., WS [2j−1], which is detected by node R1 as ŴR1

[2j−
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1], and in the (2j)th bit interval, node R1 transmits the jth bit
detected in the previous bit interval, i.e., WR1 [2j] = ŴR1 [2j−
1]. This bit is then detected at node D as ŴD[2j].

The expected error probability for half-duplex relaying can
be evaluated via (15), after substituting WS [j] and WR[j+ 1]
with WS [2j − 1] and WR[2j], respectively, and considering
that all conditional probabilities have to be conditioned on
both W2j−1

S;1 and Ŵ
2j−1
R1;1 , where WS [2i] = ŴR1

[2i] = 0 for
i ∈ {1, 2, ..., (j − 1)}.

B. Multi-hop Network

In a multi-hop network using the same type of molecule in
all hops, the complete received signal at node Rκ in the jth
bit interval can be written as

N
(Rκ)
ob,A1

[j] =

Q∑
ω=0

N
(Rω,Rκ)
ob,A1

[j], (36)

which is a Poisson random variable whose time-varying mean
is the sum of the means of all individual variables, i.e.,
N

(Rκ)

ob,A1
[j] =

∑Q
ω=0N

(Rω,Rκ)

ob,A1
[j]. In order to jointly mitigate

the effects of self-interference and backward-ISI, we combine
the two proposed schemes to mitigate the self-interference
with the scheme proposed in Section IV to mitigate the
backward-ISI as follows. For full-duplex transmission, given
Ŵ
j−1
Rκ;1, the relay node Rκ adjusts its decision threshold in the

jth bit interval as

ξSI,BIRκ,FD
[j] = ξ + ξSIExp[j] + ξBIExp[j], (37)

where ξBIExp[j] can be obtained from (28), and ξSIExp[j] can be
obtained from (35) after substituting R1 with Rκ.

For half-duplex transmission, the relay node Rκ adjusts its
decision threshold as

ξBIRκ,HD[l] = ξ + ξBIExp[l], (38)

where l = 2j if the index of the rely node is even, and l =
2j − 1 if the index of the relay node is odd. ξBIExp[l] can be

evaluated via (28), given Ŵ
l−1
Rκ;1.

The expected error probability of both of the above-
mentioned protocols can be evaluated via (18), after sub-
stituting N

(Rκ+1)
ob,Aκ+1

[j + κ] with the complete received signal

given in (36), i.e., N (Rκ+1)
ob,A1

[j+κ] for full-duplex transmission
(N (Rκ+1)

ob,A1
[l + κ] for half-duplex transmission), ξRκ+1 with

ξSI,BIRκ+1,FD
[j+κ] for full-duplex transmission (ξBIRκ+1,HD

[l+κ]
for half-duplex transmission), and considering that all condi-
tional probabilities have to be conditioned on {Ŵ

j+κ−2
Rω;1 }, ω ∈

{0, ..., Q}. The previously detected bits in Ŵ
j+κ−2
Rκ;1 , i.e.,

ŴRκ [i], i ≤ j + κ− 2, are modeled as ŴRκ [i] = |λ−WS [i]|,
where λ ∈ {0, 1} is the outcome of a coin toss with Pr(λ =

1) = Peκ [i|{Ŵ
i+κ−2
Rω;1 }] and Pr(λ = 0) = 1 − Pr(λ = 1)

for full-duplex transmission. For half-duplex transmission, we
model the detected bits as ŴRκ [l

′
] = |λ − WS [2i]|, i <

b l+κ−22 c, where l
′

= 2i if κ is even, and l
′

= 2i − 1

if κ is odd, and Pr(λ = 1) = Peκ [i|{Ŵ
2i+κ−1
Rω;1 } and

Pr(λ = 0) = 1− Pr(λ = 1).

TABLE II
SYSTEM PARAMETERS USED IN SIMULATIONS

Parameter Symbol Value
Probability of binary 1 P1 0.5

Length of transmitter sequence L 50
Radius of rely node Rκ rRκ 45 nm

Radius of node D rD 45 nm

Diffusion coefficient [20], [21] DAf 4.365× 10−10 m2

s

TABLE III
SUMMARY OF THE CONSIDERED RELAYING PROTOCOLS

Relaying Relaying Relay Protocol
Scheme Mode Detection Acronym

Threshold
MM-MH Full-duplex ξ FD
2M-MH Full-duplex ξ FD
2M-MH Full-duplex (27) FD-A
SM-MH Full-duplex ξ FD
SM-MH Full-duplex (33) FD-A-SI
SM-MH Half-duplex ξ HD
SM-MH Full-duplex (37) FD-A-BI-SI
SM-MH Half-duplex (38) HD-A-BI

VI. NUMERICAL RESULTS

In this section, we present simulation and analytical results
to evaluate the performance of the proposed relaying schemes.
We also show the excellent match between our simulation and
analytical results. We adopted the particle-based stochastic
simulator introduced in [20]. In our simulations, time is
advanced in discrete steps t0, i.e., the time between two con-
secutive samples, where in each time step molecules undergo
random movement. The environment parameters are listed in
Table II.

In order to focus on the comparison of the performance of
the different relaying protocols, we keep the physical parame-
ters of the relays and the destination node constant throughout
this section. In particular, we assume that rRκ = rD, and
nodes Rκ, 1 ≤ κ ≤ Q, and S release the same numbers
of molecules. The only parameters that we vary are the
numbers of relays, the decision threshold, the modulation bit
interval, the frequency of sampling, and the number of released
molecules. We assume xD = 1 µm throughout this section,
unless specified otherwise.

In Table III, we summarize the protocols considered for
multi-hop transmission. The FD protocol, i.e., the full-duplex
mode without an adaptive threshold in 2M-MH and SM-MH,
is mainly considered for comparison to illustrate the effects of
backward-ISI and self-interference, respectively.

In the following, we refer to the case when no relay is
deployed between node S and node D as the baseline case. For
a fair comparison between the multi-hop case and the baseline
case, we assume that for multi-hop transmission each relay
node Rκ, κ ∈ {1, ..., Q}, and node S release NA1

/(Q + 1)
molecules, respectively, to transmit information bit “1”, where
NA1 is the number of molecules released by node S in the
baseline case. In all figures, the expected error probability of
the multi-hop link was evaluated via (18), after taking into
account the modifications required for each protocol.
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Fig. 3. Average error probability of a single link as a function of the number
of released molecules NA1 .
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Fig. 4. Average error probability of a single link as a function of the detection
threshold ξ.

A. Single-Hop Optimization

In Figs. 3 and 4, we evaluate the expected error probability
of a single link as a function of NA1

and ξ, respectively, to
assess the accuracy of the optimal values, NAopt and ξopt,
which are derived in Section III. We assume that xD = 250 nm
and evaluate P e1 for different system parameters, i.e., M =
{5, 10}, T = {200, 400} µs, and ξ = {5, 10} in Fig. 3, and
NA1

= {2000, 4000} in Fig. 4. We emphasize that the results
shown in Figs. 3 and 4 are also valid for the expected error
probability of individual hops of an MM-MH network (when
the relative distance between two adjacent nodes is 250 nm).

In Fig. 3, we observe that, by doubling ξ, the optimal NA1

is approximately doubled which is in agreement with (23).
We can also see that increasing M and T decreases and
increases the optimal NA1 , respectively. Fig. 4 shows that,
for a given NA1 , by increasing the number of samples M per
bit interval the optimal ξ increases. Furthermore, we observe
that by increasing the modulation bit interval T , due to the
decreasing ISI, the optimal ξ also decreases. Finally, we note
the excellent match between simulation and analytical results.

B. Multi-Molecule Multi-Hop Network

In Fig. 5, we evaluate the performance of MM-MH networks
as a function of the number of relays deployed between node
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T = 200µs

T = 400µs

Fig. 5. Average error probability of an MM-MH network as a function of
the number of relays. Q = 0 is the baseline case.

S and node D. We use a different type of molecule in each hop
and employ the FD protocol. Node D is placed at xD = 1 µm,
and NA1

= 20000 for the baseline case. We set the number
of samples per bit interval to M = 10 with t0 = 20 µs.
For a fair comparison of the performance of the network
for different bit intervals, we assume that the frequency of
sampling, t0, and the number of samples per bit interval are
independent of T , i.e., for any T the samples are taken at
times t = {20, 40, 60, . . . , 200} µs within the current bit
interval. Furthermore, for the multi-hop case and the baseline
case, we chose the average optimal detection threshold, ξopt,
given T , M , the relative distance between two adjacent relay
nodes, and the number of molecules released by each relay,
such that the average error probability of the individual hops
is minimized. The results in Fig. 5 show that by increasing
the number of relay nodes between node S and node D,
the overall performance of the network improves. This is
because, by increasing the number of relay nodes, the relative
distance between two adjacent relay nodes decreases which
leads to an improvement in the performance of individual
hops. We also observe that by increasing the bit interval T ,
the performance improves by orders of magnitude, especially
for a large number of relays. This shows that if the number
of the types of molecules that can be used is not limited, ISI
is the dominant performance limiting factor of the network.
We also note the excellent agreement between simulation
and analytical results which confirms the accuracy of the
approximations made for evaluation of the expected error
probability of the multi-hop network.

C. Two-Molecule Multi-hop Network

We now consider a 2M-MH network and study the effects
of backward-ISI and forward-ISI. In Figs 6 and 7, we adopt
xD = 1 µm, M = 10, and t0 = 20 µs.

Fig. 6 shows the performance of a three-hop network as a
function of the detection threshold for T = 200 µs. This is the
smallest multi-hop network where backward-ISI occurs at the
first relay node. We compare the performance of the baseline
case with the FD and FD-A protocols. For FD and the baseline
case, we adopted ξD = ξR1

= ξR2
= ξ, and for the FD-A
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Fig. 6. Average error probability of a 2M-MH network as a function of the
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Fig. 7. Average error probability of a 2M-MH network as a function of the
number of relays. Q = 0 is the baseline case.

protocol, the fixed part of the adaptive threshold at R1 is ξ. The
simulation results reveal that the occurrence of backward-ISI at
the first relay heavily affects the performance of the first relay
in the FD protocol, and as a result, the overall performance of
the network is limited by the performance of the first hop. In
fact, the FD protocol has almost the same performance as the
baseline case, where no relay is used. However, the proposed
FD-A protocol can effectively mitigate the backward-ISI and
performs significantly better than the baseline case.

In Fig. 7, we investigate the performance of a 2M-MH
network as a function of the number of relays deployed
between node S and node D. We compare the performance of
the baseline case (Q = 0) with the FD-A protocol. We numer-
ically found the optimal detection threshold that minimizes the
expected error probability of the overall network. The results
in Fig. 7 show that, by deploying more relays between node S
and node D, the performance of the 2M-MH network improves
first and then deteriorates. This is because when the number
of deployed relays between node S and node D increases, the
distance between adjacent relays decreases. This is beneficial
at first but also causes increased levels of forward-ISI which
eventually becomes the performance limiting factor of the
network.
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Fig. 8. Average error probability of a SM-MH network as a function of the
detection threshold, where Q = 1.

D. Single-Molecule Multi-hop Network

Fig. 8 shows the average error probability of SM-MH as a
function of the detection threshold for Q = 1 and T = 400
µs. We show the performance of FD, HD, FD-A-SI, and the
baseline case for xD = 600 nm, M = 5, t0 = 20 µs, and
NA1

= 10000 (for the baseline case). For FD, HD, and
the baseline case, we adopt ξD = ξR1

= ξ, and for the
FD-A-SI protocol, the fixed part of the adaptive threshold is
equal to ξ. Fig. 8 reveals that the FD protocol performs even
worse than the baseline case. This confirms the performance-
limiting effect of self-interference. However, the proposed
FD-A-SI and HD protocols are effective in mitigating self-
interference and perform better than the baseline scheme.
Furthermore, the HD protocol performs better than the FD-A
protocol. This is because, for the FD-A protocol, the decision
threshold can only be adapted based on the expected number of
observed molecules, which may differ from the actual number
of observed molecules. We note that the better performance
of the HD protocol comes at the expense of decreasing the
transmission rate by a factor of two.

In Fig. 9, we compare the performance of SM-MH with the
baseline case (Q = 0) as a function of number of relays Q. We
assume that xD = 1 µm, t0 = 20 µs, M = 10, NA1

= 20000,
and considered the FD-A-BI-SI, HD-A-BI, FD-A-SI, and HD
protocols for T = {200, 400} µs. For all considered protocols,
we numerically found the optimal detection threshold for the
fixed part of the adaptive decision threshold that minimizes
the expected error probability of the overall network. Fig 9
shows that HD and FD-A-SI have the same poor performance
as the baseline case when more than one relay is deployed
between node S and node D, since these two protocols cannot
mitigate the backward-ISI. However, we can see that the two
protocols that jointly mitigate the effects of self-interference
and backward-ISI, i.e., FD-A-BI-SI and HD-A-BI, perform
better than the baseline case. Furthermore, HD-A-BI performs
better than FD-A-BI-SI, because the decision threshold of
FD-A-BI-SI is adjusted in each bit interval based on the
expected number of observed molecules to mitigate both self-
interference and backward-ISI, but this expected number of
molecules may differ from the actual number of observed
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Fig. 9. Average error probability of a SM-MH network as a function of the
number of relays. Q = 0 is the baseline case.

molecules.
A comparison of the results in Figs. 5, 7, and 9 shows

that for MM-MH deploying more relays is always beneficial.
However, for 2M-MH and SM-MH, due to the presence of
performance limiting interference, it is important to optimize
the number and placement of the deployed relays.

VII. CONCLUSION

In this paper, we considered a multi-hop link be-
tween nanomachines where we deployed multiple transceiver
nanomachines between the transmitter and receiver nanoma-
chines in an effort to improve the range of diffusion-based
molecular communication. We considered three different re-
laying schemes, namely MM-MH, 2M-MH, and SM-MH. We
showed both via simulation and analytical results that for
2M-MH and SM-MH the transmission of multiple random
bits leads to the occurrence of self-interference, backward-
ISI, and forward-ISI. We proposed two different techniques to
mitigate the effect of self-interference: 1) an adaptive decision
threshold at the relay, and 2) half-duplex relaying instead
of full-duplex relaying. Adapting the decision threshold was
also employed to mitigate the effect of backward-ISI in 2M-
MH. Furthermore, we combined these methods to jointly
mitigate the effects of self-interference and backward-ISI in
SM-MH. In addition, we derived closed-form expressions for
the expected error probability of multi-hop transmission for all
considered relaying schemes. Simulation results confirmed the
accuracy of the obtained error rate expressions. Our simulation
and analytical results showed that the quality of commu-
nication between a transmitter nanomachine and a receiver
nanomachine can be significantly improved by deploying relay
nodes.

An interesting topic for future research is the investigation
of other relaying strategies such as amplify-and-forward re-
laying. Of interest is also the study of the impact of flow in
multi-hop networks. In particular, flow may be exploited as
a means for mitigation of the performance-limiting effects of
self-interference and backward-ISI.
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