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Amplify-and-Forward Relaying in Two-Hop
Diffusion-Based Molecular Communication

Networks
Arman Ahmadzadeh∗, Adam Noel†, Andreas Burkovski∗, and Robert Schober∗

∗University of Erlangen-Nuremberg, Germany
†University of British Columbia, Canada

Abstract—This paper studies a three-node network in which an
intermediate nano-transceiver, acting as a relay, is placed between
a nano-transmitter and a nano-receiver to improve the range
of diffusion-based molecular communication. Motivated by the
relaying protocols used in traditional wireless communication sys-
tems, we study amplify-and-forward (AF) relaying with fixed and
variable amplification factor for use in molecular communication
systems. To this end, we derive a closed-form expression for the
expected end-to-end error probability. Furthermore, we derive a
closed-form expression for the optimal amplification factor at the
relay node for minimization of an approximation of the expected
error probability of the network. Our analytical and simulation
results show the potential of AF relaying to improve the overall
performance of nano-networks.

I. INTRODUCTION

Molecular communication (MC) is a biocompatible ap-
proach for enabling communication among so-called nano-
machines by exchanging information via molecules. Integrat-
ing communication capabilities expands the potential function-
ality of individual nano-machines such that communities of
them, so-called nano-networks, can execute collaborative and
challenging tasks in a distributed manner. Sophisticated nano-
networks are expected to have various biomedical, environ-
mental, and industrial applications [1].

Diffusion-based MC is a passive and energy-efficient ap-
proach for communication among nano-machines where the
transportation of molecules from a nano-transmitter to a nano-
receiver in a fluid environment relies on free diffusion only;
no additional infrastructure is required. However, one of the
main drawbacks of diffusion-based MC is its limited range
of communication, since the propagation time increases and
the number of received molecules decreases with increasing
distance. This makes communication over larger distances
challenging.

One approach from conventional wireless communications
that could be adapted for MC to aid communication with
distant receivers is the use of relays. In fact, the relaying of
information is already used by nature. In particular, cascades of
signal amplification are a common way to relay information
from the exterior of a cell to its interior [2]. For example,
the binding of a signal molecule to a cell surface receptor
may activate a number of G protein molecules, each of which
activates in turn a molecule of adenylyl cyclase, resulting
in an excessive number of cAMP molecules. Subsequently,

each cAMP molecule activates a protein kinase, which in turn
generates several copies of a specific enzyme. Each enzyme
can trigger a chemical reaction, resulting in a large amount
of enzymatic product that can ultimately change the behavior
of the cell, cf. Fig. 1. For example, one rhodopsin pigment
cell (the cells of the eye responsible for interpreting light and
dark), when excited by a photon, can trigger the release of
105 enzymatic products, i.e., cGMP molecules, so there is an
amplification of five orders of magnitude.

Multihop relaying among nano-machines has been studied
in the existing MC literature; see [3]–[12]. In [3] and [4], a
diffusion-based multihop network between bacteria colonies
was analyzed, where each node of the network was formed
by a population of bacteria. In [5] and [6], the design and
analysis of repeater cells in Calcium junction channels were
investigated. In [7], the rate-delay trade-off of a three-node
nanonetwork was analyzed for a specific messenger molecule,
polyethylene, and network coding at the relay node. The use
of bacteria and virus particles as information carriers in a
multihop network was proposed in [8] and [9], respectively.
Most recently, the authors in [10] investigated a two-hop
network, where a relay node is installed to maximize the
concentration of molecules at the destination. However, most
prior works consider the transmission of a single symbol (or
bit) and, consequently, the effect of intersymbol interference
(ISI), which is unavoidable if multiple symbols (bits) are
transmitted, is not taken into account. An exception is our
work in [11], [12], where the performance of a decode-
and-forward (DF) relaying protocol is studied. However, the
complexity associated with full decoding at the relay may
not be affordable in certain applications. On the other hand,
installing a simple amplifier between a nano-transmitter and a
nano-receiver may be easier to realize.

In this paper, we assume that the transmitter nano-machine
emits multiple random bits and investigate two different re-
laying protocols: variable-gain and fixed-gain amplify-and-
forward (AF) relaying. In variable-gain AF relaying, the relay
nano-machine amplifies the signal received from the nano-
transmitter by a variable amplification factor, which may vary
in each bit interval, to forward it to the nano-receiver. In fixed-
gain AF relaying, the amplification factor at the relay nano-
machine is constant for all bit intervals. The main contributions
of this paper can be summarized as follows:
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Fig. 1. Example for amplification of a signal at different stages of a typical
cell-signaling process. Reproduced from [2].

1) We derive closed-form expressions for the expected end-
to-end error probability of variable-gain and fixed-gain
AF relaying.

2) We optimize the performance of variable-gain AF re-
laying by deriving a closed-form expression for the
optimal amplification factor at the relay nano-machine.
We propose a mechanism for variable-gain AF relaying
where the relay nano-machine estimates the optimal
amplification factor in each bit interval.

3) For fixed-gain AF relaying, the optimal amplification
factor is derived by averaging the optimal amplification
factor of variable-gain AF relaying over all bit intervals.

The rest of this paper is organized as follows. In Section
II, we introduce the system model and preliminaries of the
error rate analysis. In Section III, we derive the expected
error probability of the two-hop network for both AF relaying
protocols and the optimal amplification factor. Numerical
results are presented in Section IV, and conclusions are drawn
in Section V.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we introduce the system model and some
preliminaries required in the remainder of the paper.

A. System Model

In this paper, we use the terms “nano-machine” and “node”
interchangeably to refer to the devices in the network, as the
term “node” is commonly used in the relaying literature. We
assume that a source (S) node and a destination (D) node are
placed at locations (0, 0, 0) and (xD, 0, 0) of a 3-dimensional
space, respectively. The relay (R) node is placed in the middle
between node S and node D along the x-axis. We assume
that node D and node R are spherical in shape with fixed
volumes (and radii) VD (rD) and VR (rR), respectively, and
that they are passive observers such that molecules can diffuse
through them. For example, small, uncharged molecules, such
as ethanol and urea, can enter and leave a cell by passive
diffusion across the plasma membrane, see [2].

We assume that there are two distinct types of messenger
molecules namely, type A1 and type A2, and that relay R
can detect type A1 molecules, which are released by node S,
and emits type A2 molecules, which are detected by node D.

The number of molecules released of type Af , f ∈ {1, 2}, is
denoted as NAf , and the concentration of type Af molecules
at the point defined by vector ~r at time t in molecule · m−3

is denoted by CAf (~r, t). We assume that the movements of
individual molecules are independent.

The information that is sent from node S to node D
is encoded into a binary sequence of length L, WS =
{WS [1],WS [2], ...,WS [L]}. Here, WS [j] is the bit transmitted
by node S in the jth bit interval with Pr(WS [j] = 1) = P1,
and Pr(WS [j] = 0) = P0 = 1−P1, where Pr(·) denotes prob-
ability. For compactness, we denote a subsequence transmitted
by node S by Wb

S;a = {WS [a], ...,WS [b]}. The information
bit detected at node D in the jth bit interval is denoted
by ŴD[j]. We adopt ON/OFF keying for modulation and
a fixed bit interval duration of T seconds. Node S releases
NA1

molecules at the beginning of the bit interval to convey
information bit “1”, and no molecules to convey information
bit “0”. Furthermore, we consider a full-duplex scheme, where
reception and transmission occur simultaneously at the relay
node, i.e., in each bit interval, relay R receives a signal
from node S, and releases an amplified version of the signal
received in the previous bit interval to node D.

B. Preliminaries

In the following, we consider a single communication link
between a transmitting node n and a receiving node q, and
review the reception mechanism at node q, cf. [13]. The two
nodes can form the source-to-relay, (n = S, q = R), or relay-
to-destination, (n = R, q = D), hop in our system model.
For conciseness of presentation in this subsection, we drop
the subscript f and denote the type of molecule released by
node n and detected at node q by A.

The independent diffusion of molecules through the envi-
ronment can be described by Fick’s second law as

∂CA(~r, t)

∂t
= DA∇2CA(~r, t), (1)

where DA is the diffusion coefficient of A molecules in m2

s .
Assuming that node n is an impulsive point source, and emits
NA molecules at the point defined by vector ~rn into an infinite
environment at time t′ = 0, the expected local concentration
at the point defined by vector ~r and at time t is given by [14,
Eq. (4)]

CA(~r, t) =
NA

(4πDAt)3/2
exp

(
−|~r − ~rn|

2

4DA

)
. (2)

It is shown in [14] that the number of molecules observed
within the volume of node q, Vq , at time t due to one emission
of NA molecules at ~rn at t′ = 0, i.e., N (n,q)

ob,A (t), can be
accurately approximated as a Poisson random variable (RV)
with time-varying mean given by

N
(n,q)

ob,A (t) = CA(~rq, t)Vq, (3)

where ~rq is the vector from the origin to the center of
node q. Eq. (3) was derived under the uniform concentration
assumption, i.e., it was assumed that node q is a point observer



or that the concentration throughout its volume is uniform and
equal to that at its center; see [15]. This is a valid assumption
when node q is far from node n. The probability of observing
a given A molecule, emitted by node n at t′ = 0, inside Vq at
time t, i.e., P (n,q)

ob,A (t), is given by (3) when setting NA = 1,
i.e.,

P
(n,q)
ob,A (t) =

Vq
(4πDAt)3/2

exp

(
−|~rq − ~rn|

2

4DA

)
. (4)

For reception, we adopt the family of weighted sum de-
tectors introduced in [13], where the receiving node takes
multiple samples within a single bit interval, and adds up
the individual samples with a certain weight assigned to each
sample. When detection is required at node q, i.e., when
(n = R, q = D), then the sum is compared with a decision
threshold. For simplicity, we assume equal weights for all
samples. The decision in the jth bit interval is given by [13,
Eq. (37)]

Ŵq[j] =

{
1 if

∑M
m=1N

(n,q)
ob,A (t(j,m)) ≥ ξq,

0 otherwise,
(5)

where ξq is the detection threshold of node q, and we assume
that node q takes M equally-spaced samples in each bit
interval. The sampling time of the mth sample in the jth
bit interval is t(j,m) = (j − 1)TB + tm, where tm = mt0
and t0 is the time between two successive samples. We
assume that t0 is large enough for samples to be independent.
N

(n,q)
ob,A (t(j,m)) is a Poisson RV with mean N

(n,q)

ob,A (t(j,m))
for any individual sample. Thus, the sum of all samples in the
jth bit interval, N (n,q)

ob,A [j] =
∑M
m=1N

(n,q)
ob,A (t(j,m)), is also

a Poisson RV whose mean is the sum of the means of the
individual samples, i.e., N

(n,q)

ob,A [j] =
∑M
m=1N

(n,q)

ob,A (t(j,m)).
Due to the independent movement of the molecules, node
q observes molecules that were emitted at the start of the
current or any prior bit interval. As a result, the number of
molecules observed within Vq in the jth bit interval due to the
transmission of sequence Wj

n;1, N (n,q)
ob,A [j], is also a Poisson

RV with mean

N
(n,q)

ob,A [j] =

j∑
i=1

NA[i]

M∑
m=1

P
(n,q)
ob,A ((j − i)T + tm), (6)

where NA[i] is the number of molecules released at node n
at the beginning of the ith bit interval.

The cumulative distribution function (CDF) of the weighted
sum in the jth bit interval is given by [13, Eq. (38)]

Pr
(
N

(n,q)
ob,A [j] < ξq|Wj

n;1

)
= exp(−N (n,q)

ob,A [j])

×
ξq−1∑
ω=0

(
N

(n,q)

ob,A [j]
)ω

ω!
. (7)

III. PERFORMANCE ANALYSIS OF AF RELAYING

In this section, we evaluate the expected error probability
of the two AF relaying protocols, i.e., variable-gain and fixed-
gain AF relaying, respectively.

A. Variable-Gain AF Relaying

Node S emits type A1 molecules, which have diffusion
coefficient DA1

and can be recognized by relay node R.
In response to the received A1 molecules, the relay emits
type A2 molecules having diffusion coefficient DA2 . Node S
releases a fixed number of molecules, NA1 , and no molecules
to transmit bit “1” and bit “0” at the beginning of a bit interval,
respectively. However, the number of molecules released by
relay node R at the beginning of a bit interval, NA2

[·], varies
in each bit interval. In particular, NA2

[·] depends on the time-
varying and random number of A1 molecules observed at the
relay node in the previous bit interval.

Assuming full-duplex relaying at the relay node, the trans-
mission of information bit WS [j] from node S to node D
has two phases. In the first phase, at the beginning of the
jth bit interval, node S transmits information bit WS [j], and
node R releases NA2 [j] molecules concurrently to amplify and
forward the message received in the previous bit interval, i.e.,

NA2
[j] = k[j]N

(S,R)
ob,A1

[j − 1], (8)

where k[j] is the amplification factor of node R in the jth bit
interval.

At the end of the jth bit interval, node D makes a decision
on its received signal, and node R receives signal N (S,R)

ob,A1
[j].

In the second phase, node S transmits information bit WS [j+

1], and relay node R emits NA2 [j + 1] = k[j + 1]N
(S,R)
ob,A1

[j]
molecules, which convey the information regarding WS [j]. At
the end of the (j+ 1)th bit interval, node D makes a decision
on WS [j], ŴD[j+ 1]. Thus, node D receives the jth bit with
a one bit interval delay. The total duration of transmission for
a sequence of length L is (L+ 1)T .

B. Expected Error Probability

Given WS [j], an error occurs in the (j + 1)th bit interval
if ŴD[j + 1] 6= WS [j]. Thus, the error probability of the jth
bit, Pe[j|WS [j]] can be written as

Pe[j|WS [j]] = Pr(WS [j] 6= ŴD[j + 1]). (9)

Let us assume that Wj−1
S;1 is given. Then, the error proba-

bility of the jth bit when WS [j] = 1 and WS [j] = 0 can be
written as

Pe[j|WS [j] = 1,Wj−1
S;1 ] =

Pr(N (R,D)
ob,A2

[j + 1] < ξD|WS [j] = 1,Wj−1
S;1 ), (10)

and

Pe[j|WS [j] = 0,Wj−1
S;1 ] =

Pr(N (R,D)
ob,A2

[j + 1] ≥ ξD|WS [j] = 0,Wj−1
S;1 ), (11)

respectively. Hence, the expected error probability is given by

Pe[j|Wj−1
S;1 ] = P1Pe[j|WS [j]=1,Wj−1

S;1 ]

+ P0Pe[j|WS [j]=0,Wj−1
S;1 ]. (12)



In (10), for given N (S,R)
ob,A1

[i], i ∈ {1, · · · , j}, N (R,D)
ob,A2

[j + 1]
is a Poisson RV with mean

N
(R,D)

ob,A2
[j+1]=

j∑
i=1

k[i+1]N
(S,R)
ob,A1

[i]

M∑
m=1

P
(R,D)
ob,A2

((j−i)T+tm),

(13)
where, in turn, N (S,R)

ob,A1
[i] is also a Poisson RV. Thus, the

conditional probability in (10) can be evaluated as

Pe[j|WS [j] = 1,Wj−1
S;1 ] =

∞∑
γ1=0

· · ·
∞∑
γj=0

Pr
(
N

(R,D)
ob,A2

[j + 1]<ξD
∣∣N (S,R)

ob,A1
[1] = γ1, · · · ,

N
(S,R)
ob,A1

[j] = γj ,WS [j] = 1,Wj−1
S;1

)
× Pr

(
N

(S,R)
ob,A1

[1] = γ1,

· · · , N (S,R)
ob,A1

[j] = γj
∣∣WS [j] = 1,Wj−1

S;1

)
, (14)

where γi, i ∈ {1, · · · , j}, is one realization of Poisson RV
N

(S,R)
ob,A1

[i] for given {WS [j] = 1,Wj−1
S;1 }. The first probability

inside the sums in (14) is the conditional CDF of Poisson
RV N

(R,D)
ob,A2

[j + 1] which can be evaluated based on (7)

given N
(R,D)

ob,A2
[j + 1]. This time-varying mean, in turn, can

be evaluated based on (13) after substituting N
(S,R)
ob,A1

[i] with
k[i+1]γi. The second probability inside the sums in (14) is the
conditional joint probability mass function (PMF) of Poisson
RVs N (S,R)

ob,A1
[i], i ∈ {1, · · · , j}, for given {WS [j] = 1,Wj−1

S;1 },
where due to the independent observation of molecules in each
bit interval, we have

Pr
(
N

(S,R)
ob,A1

[1]=γ1, · · · , N (S,R)
ob,A1

[j]=γj
∣∣WS [j] = 1,Wj−1

S;1

)
=

j∏
i=1

exp(−N (S,R)

ob,A1
[i])(N

(S,R)

ob,A1
[i])γi

γi!

 , (15)

where N
(S,R)

ob,A1
[i] can be evaluated based on (6) after substitut-

ing NA[i], n, and q with NA1
WS [i], S, and R, respectively.

Analogously, the conditional probability in (11) can be eval-
uated by considering the complementary probability of (14)
after substituting WS [j] = 1 with WS [j] = 0. In (14), there
are infinitely many realizations for each Poisson RV N

(S,R)
ob,A1

[i].
In order to keep the complexity of evaluation low, we consider
only one random realization of each Poisson RV N

(S,R)
ob,A1

[i]

with mean N
(S,R)

ob,A1
[i] for a given Wi

S;1 for evaluation of (14).
Our simulation results in Section IV confirm the accuracy of
this approximation. The expected average error probability, P̄e,
is obtained by averaging (12) over all possible realizations of
Wj−1
S;1 and all bit intervals.

C. Optimal Amplification Factor

In order to maximize the performance of variable-gain AF
relaying, we derive a closed-form expression for the optimal
amplification factor, kopt[·], at the relay node for minimization
of an approximation of the expected error probability of this
network. Specifically, we approximate the random observation
of molecules at node R by the average number of observed

molecules for evaluation of (14), i.e., in (13), N (S,R)
ob,A1

[i] is

substituted with its mean N
(S,R)

ob,A1
[i]. This approximation allows

us to approximate N (R,D)
ob,A2

[j+1] in (12) by a Poisson RV with
a deterministic mean given as

N
(R,D)

ob,A2
[j+1]=

j∑
i=1

k[i+1]N
(S,R)

ob,A1
[i]

M∑
m=1

P
(R,D)
ob,A2

((j−i)T+tm).

(16)

We now derive an expression for kopt[·], for minimization of an
approximation of (12). To this end, by substituting N

(S,R)

ob,A1
[i]

from (6), N
(R,D)

ob,A2
[j+1] can be expressed as

N
(R,D)

ob,A2
[j+1]=NA1

j∑
i=1

k[i+1]

i∑
ω=1

WS [ω]

×
M∑
l=1

P
(S,R)
ob,A1

((i−ω)T+tl)

M∑
m=1

P
(R,D)
ob,A2

((j−i)T+tm). (17)

Eq. (17) can be rearranged to express N
(R,D)

ob,A2
[j + 1] as a

function of the most recent bit, WS [j], and all prior transmitted
bits (WS [i], i ∈ {1, · · · , j − 1}), as

N
(R,D)

ob,A2
[j+1]=NA1

j−1∑
i=1

k[i+1]

i∑
ω=1

WS [ω]

×
M∑
l=1

P
(S,R)
ob,A1

((i−ω)T+tl)

M∑
m=1

P
(R,D)
ob,A2

((j−i)T+tm)+k[j+1]NA1

×
j−1∑
ω=1

WS [ω]

M∑
l=1

P
(S,R)
ob,A1

((j−ω)T+tl)

M∑
m=1

P
(R,D)
ob,A2

(tm)

+ k[j + 1]NA1WS [j]

M∑
l=1

P
(S,R)
ob,A1

(tl)

M∑
m=1

P
(R,D)
ob,A2

(tm), (18)

where the first term on the right hand side represents the ISI
produced in the second hop, and the second term represents
the expected number of molecules observed in VD due to the
amplification of molecules originating from previous bit inter-
vals and observed at node R in bit interval j, WS [i], i < j (we
refer to this sum as the amplified ISI of the first hop). The third
term is the expected number of molecules observed due to the
transmission of the most recent bit WS [j]. Let us assume that
the k[i+ 1] are given. Considering (18) and the use of a fixed
threshold at node D, ξD, we observe that decreasing k[j + 1]
reduces the overall effect of ISI, and increases the probability
of miss detection, i.e., Pr(ŴD[j + 1] 6= WS [j]|WS [j] = 1).
On the other hand, increasing k[j + 1] enhances the ISI
which in turn increases the probability of false alarm, i.e.,
Pr(ŴD[j + 1] 6= WS [j]|WS [j] = 0). Thus, the expected error
probability in (12) can be minimized by optimizing k[j + 1].
The optimal k[j+ 1] is provided in the following proposition.

Proposition 1: Given Wj−1
S;1 , the optimal amplification factor

at relay node R at the beginning of the (j + 1)th bit interval,



kopt[j + 1], which minimizes the approximate expected error
probability of the jth bit, can be approximated as

kopt[j + 1] =

⌊ (ξD − 1) ln
(
B1[j]
B0[j]

× ξD−1

√
P1B1[j]
P0B0[j]

)
∑M
l=1 P

(S,D)
ob,A1

(tl)
∑M
m=1 P

(R,D)
ob,A2

(tm)

⌉
, (19)

where b·e is the nearest integer, ln(·) is the natural logarithm,
and Bb[j + 1], b ∈ {0, 1} is obtained using (17) as

Bb[j]
∣∣
WS [j]=b,Wj−1

S;1

=

j−1∑
ω=1

WS [ω]

M∑
l=1

P
(S,R)
ob,A1

((j−ω)T+tl)

× P (R,D)
ob,A2

(tm) +WS [j]

M∑
l=1

P
(S,R)
ob,A1

(tl)

M∑
m=1

P
(R,D)
ob,A2

(tm). (20)

Proof: N (R,D)
ob,A2

[j + 1] is approximated as a Poisson RV,
and hence has a discrete CDF which makes the optimization
of k[j + 1] difficult. Fortunately, this CDF can be well
approximated by a continous regularized incomplete Gamma
function as [16, Eq. (1)]

Pr(N (R,D)
ob,A2

[j+1] < ξD|Wj
S;1) '

Γ(ξD, N
(R,D)

ob,A2
[j+1]|Wj

S;1)

Γ(ξD)
,

(21)
where Γ(s, ρ) is the incomplete Gamma function given by
Γ(s, ρ) =

∫∞
ρ
e−tts−1dt [17, Eq. (6.5.3)]. The Gamma

function, Γ(s), is a special case of the incomplete Gamma
function with ρ = 0. Using this approximation, we take the
partial derivative of (12) with respect to k[j + 1], solve the
resulting equation for k[j + 1], and round the result to the
nearest integer value kopt[j + 1], which yields (19).

In the remainder of this subsection, we differentiate between
two types of variable-gain AF relaying.

Type 1: In this case, we assume that relay node R adjusts its
amplification factor in the jth bit interval to kopt[j]. However,
as shown in (19), the evaluation of kopt[j] requires knowledge
of the bits transmitted by node S. In order to cope with this
uncertainty, relay node R compares its received message in
the jth bit interval, N (S,R)

ob,A1
[j], with a decision threshold ξR

to estimate WS [j]. We denote this estimate by ŴR[j], and for
compactness the estimated information bits up to the current
bit are denoted by Ŵ

j−1
R;1 .

Thus, given Ŵ
j−1
R;1 , relay node R estimates the optimal

amplification factor in the jth bit interval, k̂opt[j+1], via (19)
after substituting Wj−1

S;1 with Ŵ
j−1
R;1 , and releases NA2

[j+1] =

k̂opt[j + 1]×N (S,R)
ob,A1

[j], A2 molecules at the beginning of the
next (j + 1)th bit interval.

Remark 1: The complexity associated with Type 1 variable-
gain AF relaying is the same as that of DF relaying, since for
estimation of WS [j], i.e., ŴR[j], relay node R has to decode
the received signal in each bit interval, which is not desirable.

Type 2: To reduce the computational complexity of Type 1
variable-gain AF relaying, we substitute k̂opt[j+1] by k̄opt[j+
1], where k̄opt[j + 1] is obtained by averaging (19) over all

TABLE I
SYSTEM PARAMETERS USED IN SIMULATIONS

Parameter Symbol Value
Probability of binary 1 P1 0.5

Receiver distance xD 500 nm
Length of transmitter sequence L 50

Radius of relay node R rR 45 nm
Radius of node D rD 45 nm

Diffusion coefficient [14], [13] DAf 4.365× 10−10 m2

s

possible realizations of the sequence Wj−1
S;1 , i.e.,

k̄opt[j + 1] =
1

| W |
∑
W

kopt[j + 1], (22)

whereW is a set containing all possible realizations of Wj−1
S;1 ,

and | W | denotes the cardinality of set W . Hence, for Type
2 variable-gain AF relaying the amplification factor in each
bit interval can be computed offline. In Section IV, we show
that k̄opt[·] converges to an asymptotic value after several bit
intervals.

The overall end-to-end expected error probability of both
Type 1 and Type 2 variable-gain AF relaying can be evaluated
via (12) after substituting k[i+1], i ∈ {1, · · · , j}, with k̂opt[i+
1] and k̄opt[i+ 1], respectively.

D. Fixed-Gain AF Relaying

In fixed-gain AF relaying, the relay node R adopts a
bit-interval-independent, fixed amplification factor k for for-
warding the signal received from node S. Specifically, the
amplification factor is denoted by k̄opt, where k̄opt is obtained
by averaging (19) over all possible realizations of Wj−1

S;1 and
over all bit intervals, i.e.,

k̄opt =
1

L | N |

L∑
j=1

∑
N
kopt[j + 1], (23)

where set N contains all possible realizations of the sequence
WL
S;1.
Fixed-gain AF relaying has a lower real-time computational

complexity in comparison to both proposed variable-gain AF
relay protocols, since no bit detection and no adjustment of
the amplification factor (kopt[·]) are required at the relay node.
Also, no prior knowledge of time-varying amplification factors
in each bit interval (k̄opt[·]) is required. The overall end-to-end
expected error probability of fixed-gain AF relaying can be
obtained from (12) after substituting k[i+ 1], i ∈ {1, · · · , j},
with k̄opt.

IV. NUMERICAL RESULTS

In this section, we present simulation and analytical results
for evaluation of the performance of the proposed relaying
protocols. We adopted the particle-based stochastic simulator
introduced in [14]. In our simulations, time is advanced in
discrete steps of t0, i.e., the time between two consecutive
samples, where in each time step molecules undergo random
motion. The environment parameters are listed in Table I.
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Fig. 2. Average error probability of 10th bit, given one randomly-chosen
9-bit sequence, vs. amplification factor k. The first 9 bits are “101101001”.

In order to focus on a comparison of the performance of the
different relaying protocols, we keep the physical parameters
of the relay and the receiver constant throughout this section.
The parameters that we vary are the decision threshold ξD,
the modulation bit interval T , the amplification factor k, and
the frequency of sampling 1/t0.

In the following, we refer to the case when no relay is
deployed between node S and node D as the baseline case.
We adopt NA1

= 2500 for the two-hop network. For a
fair comparison between the two-hop case and the baseline
case, we assume for the baseline case that for transmission
of information bit “1”, NA1 = 2500 + 2N̄A2 molecules are
released by S, where N̄A2

is the average number of molecules
released by node R for transmission of one bit in the two-hop
case.

In Fig. 2, the average error probability of the 10th bit, given
one randomly-chosen 9-bit sequence, is found as a function
of amplification factor k, for system parameters M = 10,
T = 400µs, and ξD = 20. The simulations are averaged over
105 independent transmissions of the chosen sequence. We see
that increasing k increases and decreases the probabilities of
false-alarm and miss-detection, respectively, which confirms
the existence of an optimal k for the minimization of (12).
The expected error probabilities are evaluated using (10) and
(11), when WS [10] = 1 and WS [10] = 0, respectively,
and considering two approximations for N

(S,R)

ob,A1
[·], i.e., Eqs.

(13) and (16). Although using the approximation leads to an
underestimation of the expected error probability in Fig. 2, the
difference between kopt[·] obtained via (19) and kopt[·] found
via simulation is small (less than 9%).

In Fig. 3 we show the amplification factor for Type 2
variable-gain AF relaying, k̄opt[j], as a function of the bit
interval j, for three different sets of system parameters.
The results are averaged over 105 independent realizations
of WL

S;1. For the considered scenario, k̄opt[j] first increases
and then decreases to an asymptotic value after several bit
intervals. This behavior is mainly due to the fact that, after
several bit intervals, the ISI approaches an asymptotic value;
see [18]. The slight difference between the amplification factor
for fixed-gain AF relaying, k̄opt, and the asymptotic values of
k̄opt[j] is due to the fact that k̄opt[j] is averaged over all bit
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Fig. 3. Time-varying k̄opt[j] as a function of bit interval.
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Fig. 4. Average error probability of a two-hop link as a function of the
amplification factor k.

intervals to obtain k̄opt.
In what follows, the simulated error probability is averaged

over 3×104 random realizations of the sequence WL
S;1, and the

expected error probability was evaluated via (12), after taking
into account the modifications required for each protocol.
Furthermore, for a fair comparison of the performance of
the network for different bit intervals, we assume that the
frequency of sampling, t0, and the number of samples per
bit interval, M , are both independent of T , i.e., for any T
the samples are taken at times tm = {20, 40, 60, . . . , 200} µs
within the current bit interval.

In Fig. 4, we evaluate the average error probability of a two-
hop network with fixed-gain AF relaying to assess the accuracy
of the optimal value k̄opt. We evaluated P̄e for different
system parameters, i.e., M = {10, 20}, T = {400, 600}µs,
and ξD = {10, 20}. We observe that, by doubling ξD,
and keeping the other parameters constant, the optimal k is
approximately doubled which is in agreement with (19), when
P1 = P0 = 0.5. We can also see that increasing M and T
decreases and increases the optimal k, respectively. Finally,
we note the excellent match between the optimal k observed
via simulation and that derived analytically.

Fig. 5 shows the average error probability of fixed-gain
AF relaying and the baseline case as a function of detection
threshold ξD for two different sets of system parameters, i.e.,
{M = 10, T = 400µs, k = 200} and {M = 10, T =
600µs, k = 250}. The results show that fixed-gain AF
relaying improves the overall performance of the network. We
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Fig. 5. Average error probability of fixed-gain AF relaying and the baseline
scheme vs. the detection threshold ξD .
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Fig. 6. Average error probability of fixed- and variable-gain AF relaying,
DF relaying, and the baseline case as a function of modulation bit interval T .

also see that increasing T improves the performance of fixed-
gain AF relaying, since increasing T reduces the effect of ISI
which, in turn, decreases the effect of amplified ISI at the
destination node. Furthermore, a comparison of the results in
Fig. 4 and Fig. 5 reveals that the optimization of the detection
thresholds at node D for a given k is equivalent to optimizing
k for a given ξ.

In Fig. 6, the average error probability of a two-hop network
for fixed- and variable-gain AF relaying, the DF relaying
scheme from [11], [12], and the baseline case are evaluated as
a function of modulation bit interval T . k̄opt, k̂opt[·], and k̄opt[·]
are applied for fixed-gain, Type 1 variable-gain, and Type
2 variable-gain relaying, respectively. The results show that
all considered AF relaying protocols outperform the baseline
scheme where the performance gap increases with T . Both
types of variable-gain AF relaying perform slightly better
than fixed-gain AF relaying, since the amplification factor is
adjusted in each bit interval according to the current optimal
amplification factor based on the expected ISI. Furthermore,
we observe that DF relaying outperforms AF relaying. This is
because in DF relaying, the ISI of the first hop is not amplified
by the relay node. However, the improved performance of DF
relaying comes at the expense of an increased complexity as
the relay has to decode the message received from the source,
which is not necessary for fixed-gain and Type 2 variable-gain
AF relaying. Hence, these schemes are more suitable for nodes
with limited processing capability.

V. CONCLUSION

In this paper, we considered a three-node network where
a nano-relay is deployed between a nano-transmitter and a
nano-receiver. We assumed that the nano-transmitter emits
multiple random bits, and proposed two relaying protocols,
namely fixed- and variable-gain AF relaying. Furthermore, we
derived closed-form expressions for the optimal amplification
factors at the relay node for minimization of the expected error
probability of the network. We showed via simulation and
analysis that AF relaying improves the overall performance
of the network. In particular, fixed-gain and Type 2 variable-
gain AF relaying are attractive for implementation when the
relay node has limited computational capabilities.
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